Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валентность электровалентность

    Таким образом, вопреки довольно распространенному мнению чисто ионных соединений с идеальной ионной связью на самом деле не существует . Между тем принято считать, что химическая связь у подавляющего большинства неорганических соединений имеет ионный характер. Объясняется это двумя исторически сложившимися причинами. Во-первых, почти все химические реакции исследовались в воднОй среде и представляли, по существу, ионные реакции. В то же время поведение вещества в водных растворах коренным образом отличается от его свойств в отсутствие воды. Так, соляная кислота относится к числу сильнейших электролитов растворенный в воде хлорид водорода полностью диссоциирует на ионы водорода и хлора. Основываясь на этом факте, можно было бы допустить ионную связь в молекуле НС1. Однако безводный хлорид водорода представляет собой почти неионное соединение, в котором эффективные заряды водорода и хлора соответственно равны +0,17 и -0,17. Во-вторых, в свете учения об ионной связи в неорганической химии укоренились представления о положительной и отрицательной валентности (электровалентности). Даже если невозможны отдача и присоединение электронов, нередко подразумевали электровалентность, т.е. ионную связь. Это усугублялось еще и тем, что в неорганической химии исключительно важную роль играет электронная теория окислительно-восстановительных реакций, постулирующая переход электронов от восстановителей к окислителям. При этом степень окисления полностью отождествлялась с электровалентностью и для удобства подсчета числа отдаваемых и присоединяемых электронов заведомо неионные соединения рассматривались как вещества с ионной связью. Между тем понятие степени окисления не имеет ничего общего [c.64]


    Общая характеристика элементов подгруппы меди. Электронная конфигурация (п—1)с( л5. Хотя во внешнем уровне у них находится по одному -электрону (как и в щелочных металлах), элементы подгруппы 1В— -элементы, так как последний электрон попадает в (п—1)й -подуровень, а не в пз, как у щелочных металлов. Поэтому элементы подгруппы меди мало похожи на щелочные металлы. Они гораздо больше похожи на переходные элементы, предшествующие им в соответствующих периодах. Хотя (п—1)й(-подуровень в их атомах содержит 10 электронов, но он еще не стабилен эти атомы, возбуждаясь, проявляют положительную валентность не только +1, но и +2, +3. Таким образом, их высшая электровалентность не совпадает с номером группы. [c.354]

    Во-вторых, в свете учения об ионной связи (Коссель) в химии сильно укоренились представления о положительной и отрицательной валентности (электровалентности). Даже в том случае, когда невозможна отдача и присоединение электронов, нередко подразумевали электровалентность. Это усугублялось еще и тем, что в неорганической химии исключительно важную роль играет электронная теория окис-лительно-восстановительных реакций, постулирующая переход электронов от восстановителей к окислителям. При этом окислительное число (степень окисления) полностью отождествлялось с электровалентностью и для удобства подсчета числа отдаваемых и присоединяемых электронов заведомо неионные соединения рассматриваются как вещества с ионной связью. Однако понятие окислительного числа носит только условный характер и не имеет ничего общего ни с эффективными зарядами атомов, ни с фактическим числом связей, которые образует данный атом (валентность). [c.37]

    Электрохимическая валентность (электровалентность) центрального атома в комплексных или координационных соединениях обозначается по интернациональным правилам, так же как и в простых соединениях, т. е. римскими цифрами. В катионных комплексах и в анионных комплексах кислот цифра, обозначающая валентность, ставится после названия соответствующего элемента. В анионных комплексах солей она пишется после оканчивающихся на ат названий комплексов. [c.399]

    Вследствие противоположности своих зарядов оба иона притягиваются друг к другу. Однако, сблизившись до известного предела, они останавливаются на таком расстоянии, при котором притяжение уравновешивается взаимным отталкиванием их электронных оболочек. Валентная связь, сопровождающаяся практически полным перетягиванием электронной пары одним из атомов и последующим стяжением образовавшихся ионов, называется ионной связью (иначе электровалентной, гетерополярной). Соединение по типу ионной связи происходит в тех случаях, когда реагирующие атомы обладают резко противоположным химическим характером. [c.88]


    Более содержательное определение валентности v получено на основании метода молекулярных орбиталей и понятий ковалентности (и ) и электровалентности (ue)- Валентность равна сумме ковалентности и модуля электровалентности  [c.118]

    Таким образом, степень окисления характеризует валентность и электроотрицательность атома элемента в составе молекулы. Если бы связи в молекуле были абсолютно ионными, то степень окисления равнялась бы электровалентностям атомов. [c.261]

    Степенью окисления называется заряд элемента, вычисленный исходя из предположения, что соединение состоит только из ионов. Степень окисления является формализованным отображением общей валентности элемента в соединении, определяемой суммой его ковалентности и электровалентности. [c.261]

    Электровалентность и ковалентность. Положительная или отрицательная валентность элемента — проще всего определить, если два элемента образовывали ионное соединение считалось, что элемент, атом которого стал положительно заряженным ионом, проявил положительную валентность, а элемент, атом которого стал отрицательно заряженным ионом, — отрицательную. Численное значение валентности считалось равным величине заряда ионов. Поскольку ионы в соединениях образуются посредством отдачи и присоединения атомами электронов, величина заряда ионов обусловливается числом отданных (положительный) и присоединенных (отрицательный) атомами электронов. В соответствии с этим положительная валентность элемента измерялась числом отданных его атомом электронов, а отрицательная валентность — числом электронов, присоединенных данным атомом. Таким образом, поскольку валентность измерялась величиной электрического заряда атомов, она и получила название электровалентности. Ее называют также ионной валентностью (Л. Полинг). [c.15]

    Понятие степени окисления, таким образом, пришло на смену понятию электровалентности. В связи с этим представляется нецелесообразным пользоваться и понятием ковалентности. Для характеристики элементов лучше применять понятие валентности, определяя ее чис-лом электронов, используемых данным атомом для образования электронных пар, независимо от того, притягиваются они к данному атому или, наоборот, оттягиваются от него. Тогда валентность будет выражаться числом без знака. В отличие от валентности степень окисления определяется числом электронов, оттянутых от данного атома, — положительная, или притянутых к нему, — отрицательная. Во многих случаях арифметические значения валентности и степени окисления [c.16]

    Со временем понятие валентности расширилось, оно стало указывать и природу химических связей между атомами в их соединении. В соединениях с ионной (или электровалентной) связью валентность равна числу электронов, отданных или присоединенных атомом при превращении его в ион. В соединениях с ковалентной связью валентность определяется числом элект- [c.76]

    Большим стимулом развития теории химической связи послужило открытие электронного строения атома. Оно утвердило представление об электрической природе сил химического сродства. Заполненная восьмиэлектронная внешняя оболочка атома стала критерием его химической инертности, а мерой химической активности — стремление к образованию внешнего электронного слоя, имитирующего оболочку атома благородного газа, о могло осуществиться присоединением или отдачей части валентных электронов атома с превращением его в отрицательно или положительно заряженный ион. Последующее электростатическое притяжение разноименных ионов обусловливало ионную, или электровалентную, связь между ними (ионная теория Косселя, 1916). [c.87]

    С одной стороны, они указали на то, что ответственными за образование химической связи являются внешние валентные электроны атомов. Таким образом, классическая валентность была истолкована как электровалентность, а химическая связь — как [c.89]

    Понятие об эквиваленте. Эквивалент по водороду. Связь между эквивалентом, валентностью и атомным весом. Определение атомного веса по эквиваленту. Эквивалент сложного вещества. Валентность. Оп-ределение валентности. Образование молекул. Электровалентная и ковалентная связи. [c.47]

    Отметим, что валентность элементов, проявляемая ими в соединениях с ионными связями, очень часто называют электровалентностью, или степенью окисления. [c.76]

    При образовании соединений с ковалентной связью часто нужно ставить также знак валентности. Хотя определение знака валентности в таких случаях сугубо условное, оно очень удобно при подборе коэффициентов в уравнениях окислительно-восстановительных реакций. В соединениях с ковалентной связью определяют не валентность, а степень окисления, которая является более общим понятием, чем электровалентность. Так, в молекулах HjO, Oj, N. ионов нет, поэтому здесь можно говорить не об электровалентности, а о степени окисления элементов. [c.18]


    Степень окисления (электровалентность) характеризует заряд ионов данного химического элемента в данном соединении. Число отдаваемых электронов определяет положительную валентность, число присоединяемых электронов — отрицательную валентность. Например, в соединениях ВаСЬ и КагО барий проявляет положительную электровалентность (2+), натрий — (I" ). хлор имеет отрицательную валентность (1 ), кислород — (2-). [c.77]

    Валентность элементов в ионных соединениях характеризуется числом отданных или просоединенных электронов и, таким образом, равна элехтровалент-пости. В приведенном примере электровалентность лития равна +1, а электровалентность фтора равна —1. [c.143]

    Электровалентная, или ионная (гетерополярная), связь. При взаимодействии атомы, значительно отличающиеся по способности отдавать или присоединять валентные электроны, превращаются в противоположно заряженные ионы. Так, при реакции между хлором и натрием хлор, имеющий семь валентных электронов, отнимает у натрия его единственный валентный электрон и превращается в отрицательно заряженный нон хлора. При этом у хлора образуется устойчивый восьмиэлектронный слой, подобный внешнему слою инертного газа (аргона). Но образовавшийся ион хлора содержит уже на один электрон больше, чем нейтральный атом хлора суммарный отрицательный заряд всех его 18-ти электронов превышает положительный заряд ( + 17) ядра, и поэтому ион хлора несет отрицательный заряд (—1). Натрий легко отдает электрон, так как у него, таким образом, обнажается устойчивый слой из восьми электронов, подобный внешнему электронному слою неона, и атом превращается в положительно заряженный ион. Этот ион содержит на один электрон меньше, чем нейтральный атом натрия суммарный заряд 10-ти оставшихся у него электронов меньше, чем положительный заряд (+11) ядра. Поэтому ион натрия несет положительный заряд (+1). Это видно из схемы, приведенной на рис. 3. [c.25]

    Таким образом, ионной связи в молекуле предшествует процесс образования положительных и отрицательных ионов. Этот процесс происходит при спаривании валентных электронов с противоположными спинами и имеет квантовомеханическую природу. Поэтому ионную связь правильнее называть электровалентной связью. [c.114]

    Валентность — это связывающая сила элемента, оцениваемая числом атомов водорода (или его эквивалентов), с которыми атом элемента может соединиться с образованием устойчивых молекул. Хорошо известно, что валентность элемента определяется его положением в периодической системе. Атом с незаполненной внешней оболочкой стремится достичь электронной структуры инертного газа , т. е. заполнить свой внешний уровень. Существуют две принципиальные возможности достижения этого устойчивого состояния электровалентность приводит к потере или приобретению атомом электронов, в результате чего образуются заряженные частицы (ионы) с завершенными внешними оболочками при ковалентности электронная структура атома становится эквивалентной электронной конфигурации инертного газа за счет обобществления электронов. [c.14]

    I Члены группы проявляют валентности 4 или 2. При движении по группе сверху вниз увеличивается тенденция к двухвалентному состоянию и увеличивается электровалентный характер связей  [c.505]

    Изложенные выш представления о механизме образования соединений с ионной связью приводят к заключению, что валентность элементов в соединениях с ионной связью есть не что иное, как число электрических зарядов их ионов. Поэтому ее иначе называют электровалентностью. [c.86]

    Величина электровалентности определяется числом электронов, отданных атомом при образовании положительного иона или присоединившихся к атому при образовании отрицательного иона. В первом случае валентность считается положительнойГ, во втором — отрицательной. Например, в окиси алюминия алюминий положительно трехвалентен, а кислород отрицательно двухвалентен в хлористом натрии натрий положительно одновалентен, а хлор отрицательно одновалентен. [c.86]

    Рис, 9,1 построен на основании того, что ко-валентьюсть атома определяется неполярной со-став,ляющей химической связи, а электровалентность — эффективными зарядами атомов. Из рис, 9,1 также видно, что, хотя ковалентность и электровалентности атомов изменяются различным образом, сумма ковалентности и модуля электровалентности, т. е. валентность, атома остается постоянной. [c.259]

    Среди химических соединений встречаются такие, в молекулах которых атомы не поляризованы. Очевидно, для них понятие о положительной и отрицательной электровалентности неприменимо. Если же молекула составлена из атомов одного элемента (элементарные вещества), теряет смысл и обычное понятие о стехиометрической валентности. Однако, чтобы оценивать способность атомов присоединять то или иное число других атомов, стали использовать число химических связей, которые возникают между данным атомом и другими атомами при образовании химического соединения. Поскольку эти химические связи, представляющие собой электронные пары, одновременно принадлежащие обоим соединенным атомам, называются ковалентными, способность атома образовать то или иное число химических связей с другими атомами получила название ковалент- [c.15]

    Степень окисления и окислительное число. При реакциях образования ионных соединений переход электронов от одних реагирующих атомов или ионов к другим сопровождается соответствующим изменением величины или знака их электровалентности. При образовании соединений ковалентной природы такого изменения электровалент-. ного состояния атомов фактически не происходит, а только имеет место перераспределение электронных связей, причем валентность элементов исходных реагирующих веществ не изменяется. В настоящее время для характеристики состояния элемента в соединениях введено условное понятие степени окисления. Численное выражение степени окисления называют окислительным числом. [c.16]

    Прежде чем обсуждать некоторые теории координационной связи следует отметить, что теория — не более чем приближение к дей ствительности. И если бывают из нее исключения, этого еще не достаточно, чтобы обесценить всю теорию. Более вероятно, что исключения указывают на наше неумение давать им удовлетворительные объяснения. Обычно нужно только видоизменять тео-шю таким образом, чтобы эти исключения были ею охвачены Лримером может служить современное состояние метода валент ных связей. Часто одни и те же явления могут быть объяснены двумя или даже более теориями, и тогда мы должны искать более фундаментальную концепцию, общую для обеих теорий, которая будет по всей вероятности лучшим приближением к действительности. Такое положение существует сейчас и с теориями кристаллического поля, и молекулярных орбиталей в их применении к комплексам. На их основе вырос в настоящее время более универ сальный метод, известный как теория поля лигандов. Электронная теория валентности, сформулированная Льюисом в 1916 г. и распространенная на многие системы Лэнгмюром е 1919 г. и другими авторами в течение последующего десятилетия дала химикам возможность выразить вернеровское понятие валентности с помощью электронных представлений. Основная за слуга в использовании новой теории валентности принадлежит Сиджвику и Лаури . Главные валентности Вернера были интерпретированы как результат электровалентности, или пере коса электрона, а побочные рассматривали как проявление ковалентности, или обобщения электронных пар. Главная валент ность может быть, а может и не быть ионной. Так, если во внутрен пей координационной сфере находится отрицательный ион, на пример ион хлора в нитрате хлорпентаамминохрома (И1) Сг(ЫНз)цС1](ЫОз)з, он может быть связан с атомом металла как главной, так и побочной валентностями. В данном случае ион хлора потерял свой ионный характер. Только нитрат-ионы насы щают главную валентность и поэтому сохраняют свой ионный рактер. [c.245]

    Со временем понятие валентности расширилось — валентность стала ука. ывать и природу химических связей между атомами и их соедииенни. В соединениях с ионной (или электровалентной) связ1>ю валентность равна числу электронов, отданных или присоединенных атомом при превращении его в иои. В соединениях с ковалентной связв.ю валентность определяется числом электронов, которые атом отдает для образования общих электронных пар. [c.52]

    Для полярных соединений также часто используют понятне степени окисления (электровалентности), условно считая, что такие соединения состоят только нз ионов (см, 2). Так, в галоге-иоводородах и воде водород имеет формально положительную валентность, равную 1+, галогены — формально отрицательную валентность 1-, кислород — отрицательную валентность 2-, как это обозначено в формулах Н+Р-, Н-НС1 , На+О . [c.81]

    В рассматриваемом ряду электровалентность серы изменяется от (2-) в сероводороде до (6+) в серной кислоте. Если в состав молекулы входит химический элемент в своем высшем валентном состоянии, то такое химическое соединение в химических реакциях может выступать лишь в роли окислителя. Атом серы в H2SO4 находится в своем высшем валентном состоянии (6+), он отдал 6 электронов и больше отдавать электронов не может. Следовательно, S + будет лроявлять только свойства окислителя. [c.409]

    На примере аммонийхлорида удобно затронуть существующее в современной, химии перекрещивание различных понятий. Так, в ЫН4С1 атом азота имеет степень окисления (значность) —3, ковалентность 4, электровалентность +1 и общую валентность 5, а для его эффективного заряда предлагалось значение —0,45. [c.395]

    В 1916 г. В. Коссель выдвинул предположение, что при образовании химической связи происходит передача электронов от одного атома к другому в результате образуются заряженные частицы, которые притягиваются друг к другу. Это представление правильно отразило природу ионной (гетерополярной, электровалентной) связи, характерной для большинства неорганических соединений. Однако было ясно, что в таких молекулах, как водород Нз, хлор С1г, метан СН4, и в более сложных органических соединениях природа связи должна быть иной. Основы для понимания этого типа связи были заложены в работах Г. Льюиса и И. Ленгмюра (1913— 1920 гг.), указавших на особую роль октета электронов как устойчивой электронной оболочки и на возможность создания октета не только путем передачи, но и путем обобщения электро1Юв. От этих работ ведет свое начало представление о существовании особого типа связи (ковалентной, гомеополярной), осуществляемой парой электронов. Так валентная черточка классической теории строения получила физическое истолкование. И все же перед учеными продолжали стоять вопросы почему именно электронная пара необходима для создания ковалентной связи, почему устойчив именно октет электронов, в каком состоянии находятся связующие электроны Поиски ответа на эти вопросы с помощью зародившейся в середине 20-х годов квантовой механики явились одним из направлений дальнейшего развития теории химической связи. Для судьбы электронных представлений в органической химии важнейшее значение имело и развитие в другом направлении объяснение с новых позиций богатого экспериментального материала органической химии предсказание новых, еще неизвестных экспериментальных фактов. [c.38]

    В настоящее время валентность связывают с перераспределением электронов, т. е. с основными типами химической связи. И под валентностью понимают способность атомов, вступая Ь химическое соединение, отдавать или принимать определенное число электройов (электровалентность) или объединять их для образования электронных пар, общих для двух атомов (ковалентность), Валентность представляет собой число электронов атома элемента, участвующих в образовании соединения. [c.17]


Смотреть страницы где упоминается термин Валентность электровалентность: [c.18]    [c.85]    [c.55]    [c.55]    [c.541]    [c.260]    [c.541]    [c.274]    [c.544]    [c.52]    [c.53]    [c.261]    [c.591]    [c.223]   
Электронная теория кислот и оснований (1950) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Электровалентность



© 2025 chem21.info Реклама на сайте