Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связывающие электроны и валентность

    Из общего класса циклических соединений выделяют группу внутрикомплексных соединений, которые образуются при координации лигандов комплексонов как по донорно-акцепторному механизму, так и с участием неспаренных валентных электронов. Ко,мплексоны — обширный класс соединений, относящихся к аминополикарбоновым кислотам, у которых с атомом азота связано несколько алкилкарбоксильных групп. В молекуле комплексона имеется несколько функциональных групп, способных одновременно связывать центральный иои (захватывать его, подобно клешням ) с образованием комплесонатов. Комплексона т ы — это координационные соединения металлов с комплексо-нами. Простейшим примером может служить соединение меди с аминоуксусной кислотой — глицинат меди  [c.237]


    Более важную группу дефектных кристаллов представляют кристаллы нестехиометрического состава. Они характеризуются излишком или недостатком одного из компонентов по отношению к стехиометрической формуле состава, хотя это и не приводит к изменению фазового состояния. Действительно, большинство окислов металлов имеет непостоянный состав, особенно металлов с переменной валентностью (медь, железо, алюминий и др.). Поэтому вполне очевидно, что в дефектных кристаллах металлов имеются узлы с неравномерно распределенным электрическим полем. Например, вакантные анионные узлы действуют в кристалле с эффективным положительным зарядом и создают кулоновское потенциальное поле, способное связывать электроны. В других веществах образуются вакантные места в катионной решетке. Вакантные катионные узлы при этом [c.166]

    В дальнейшем, в связи с возникновением и развитием электронной теории строения атома и химической связи, валентность стали связывать с числом электронов, переходящих от одного атома к другому, или с числом химических связей, возникающих между атомами в процессе образования химического соединения (см. III.7). [c.15]

    В настоящее время, когда доступны спектры поглощения и в далекой ультрафиолетовой области вплоть до интервала энергий, приводящих к ионизации молекул, обнаружены полосы, соответствующие переходам всех электронов валентной оболочки молекулы. Поэтому имеет смысл отождествлять полосы с функциональ-ными группами в молекулах и связывать изменения в спектрах с внутримолекулярными взаимодействиями. [c.98]

    Как мы видели, свободные электроны и дырки кристалла выполняют функции свободных, соответственно положительных и отрицательных валентностей (речь идет о кристаллах с более или менее ярко выраженными ионными связями). Отсюда следует, что слабая форма хемосорбции представляет собой такую форму, которая осуществляется без участия свободных валентностей поверхности. Прочная хемосорбция означает вовлечение в связь свободной валентности поверхности, которая при этом локализуется и связывается с валентностью адсорбируемой частицы. Мы имеем акцепторную или донорную форму прочной хемосорбции в зависимости от того, какая именно свободная валентность поверхности (положительная или отрицательная) используется при этом. [c.50]

    VI е т а Л Л И ч е С К а я связь отличается тем, что валентные электроны являются общими для всего кристалла. Металл пред-ста ляет собой совокупность пространственной решетки, построенной из положительных ионов, возникающих в результате отщепления от каждого из атомов одного или нескольких валентных электронов, и этих отщепившихся электронов, движущихся внутри решетки и взаимодействующих как с ионами, расположенными в узлах решетки, так и друг с другом. Электроны не принадлежат определенным атомам. Они непрерывно н беспорядочно перемещаются внутри кристаллической решетки, переходят от одного атома к другому, связывая их. Скопление электронов, осуществляющих. металлическую связь, получило название электронного газа. [c.9]


    Таким образом, разрыв ковалентной связи для получения двух нейтральных соединений всегда должен дать два радикала, каждый со свободной валентностью и обладающий активностью свободного радикала. Разрыв ионной связи может дать либо два иона с заполненными оболочками, имеющими только электростатический поляризующий момент (MgO = Mg + + О ), либо два иона, один из которых (обычно катион) также имеет электрон с непарным спином и поэтому имеет дополнительные свойства, присущие радикалу (например, NiO = NiO +0 -). Молекулы веществ, образующих твердые поверхности, дегазированные в вакууме, обладают множеством свободных связей, по которым могут идти реакции с молекулами газовой фазы (хемосорбция) с образованием различных поверхностных комплексов- Очевидно, что каталитическое действие твердого вещества зависит от составляющих его лептонов. Раньше исследователи связывали высокую каталитическую активность с переменной валентностью, цветом, магнитными свойствами и т. д. Сравнительно недавно метод электронной проводимости стал доминирующим в определении их свойств. Он лучше отражает электронную структуру оболочек на основе периодической системы, хотя дает лишь общую характеристику, которая не может заменить результатов, получаемых при детальном изучении химии и физики исследуемых твердых тел. [c.20]

    Водородная связь представляет собой как бы вторую побочную валентность водородного атома, которую он может проявлять по отношению к сильно отрицательным атомам, если основная валентность связывает его с атомом, тоже сильно отрицательным. В жидком состоянии фтористый водород имеет молекулу H Fg. При растворении его в воде образуются ионы Н+ и НРГ. В анионе HFF водород связывает оба атома фтора не двумя ковалентными связями, так как он не может иметь больше одной такой связи, а электростатическим взаимодействием протона Н+ с ионами Р . Сильно электроотрицательный атом F отнимает электрон от атома Н и последний превращается в протон Н+, способный своим зарядом довольно прочно связать второй ион F . Это ведет к образованию водородной связи типа X . ., H+X , которую называют водородным мостиком. [c.79]

    Позже, с развитием представлений о строении атомов, валентность элементов стали связывать с числом неспаренных электронов, благодаря которым осуществляется связь между атомами. [c.42]

    Уместно напомнить, что водородная связь — это как бы вторая (побочная) валентность водородного атома, которую он может проявлять по отношению к сильно отрицательным атомам, если основная валентность связывает его с атомом, тоже сильно отрицательным в данной молекуле,— фтором, кислородом, азотом. Она образуется вследствие притяжения между ковалентно связанным атомом водорода (протон) и свободными электронами электроотрицательного атома другой молекулы. Этот вид связи свойствен любым агрегатным состояниям вещества. [c.81]

    Для того чтобы вещество могло быть акцептором протонов (т.е. проявляло себя как основание, согласно представлениям Бренстеда-Лаури), оно должно обладать неподеленной па]30й электронов, которая бы связывала протон. Например, мьс уже знаем, что ЫН, ведет себя как акцептор протона. Пользуясь валентными (льюисовы-ми) структурами, реакцию между Н" и ЫНз можно написать следующим образом  [c.99]

    Следовательно, при образовании любой молекулы атомы в ней связываются друг с другом. Причина образования молекул состоит в том, что между атомами действуют определенные силы — образуется химическая связь. Химические связи характеризуются прежде всего способностью разрываться и возникать при определенных реакциях. Доказано, что в образовании химической связи между атомами главную роль играют электроны, расположенные на внешней оболочке и, следовательно, связанные с ядром наименее прочно, так называемые валентные электроны. Поэтому строение валентной электронной оболочки атомов является определяющим фактором при рассмотрении условий образования химической связи. [c.69]

    Молекулы или ионы, окружающие атом металла в комплексе, принято называть лигандами (от латинского слова / / зге-связывать). Обычно в роли лигандов выступают анионы или полярные молекулы. В любом случае они имеют по крайней мере одну неподеленную пару валентных электронов, как это видно из следующих примеров  [c.370]

    Согласно большинству физических и химических методов, четыре связи в молекуле метана эквивалентны (например, ни ЯМР-, ни ИК-спектр метана не содержит пиков, которые можно было бы отнести к разного вида связям С—Н), однако имеется такой физический метод, который позволяет дифференцировать восемь валентных электронов в молекуле метана. Это метод фотоэлектронной спектроскопии [10]. Суть его состоит в том, что молекулу или свободный атом облучают в вакууме ультрафиолетовым светом, вызывая выброс электрона, энергию которого измеряют. Разность между этой энергией и энергией использованного излучения есть потенциал ионизации вырванного из молекулы электрона. Молекула, содержащая несколько электронов различной энергии, может терять любой электрон, энергия которого ниже, чем энергия использованного излучения (каждая молекула теряет только один электрон, потеря двух электронов одной молекулой практически никогда не имеет места). Фотоэлектронный спектр состоит из серий полос, каждая из которых соответствует орбитали определенной энергии. Таким образом, спектр дает прямую экспериментальную картину всех орбиталей в зависимости от их энергии, при условии что энергия используемого излучения достаточно высока [11]. Широкие полосы в спектре обычно соответствуют сильно связанным электронам, а узкие полосы — слабо связанным или несвязанным электронам. Типичным примером является спектр молекулярного азота, показанный на рис. 1.8 [12]. Электронная структура молекулы N2 показана на рис. 1.9. Две -орбитали атомов азота комбинируются, давая две орбитали — связываю- [c.24]


    Для того чтобы объяснить эти аномалии, необходимо сделать ряд допущений, некоторые из которых уже были введены и обоснованы ранее. Так, неподеленная пара электронов, которая занимает довольно большую диффузную орбиталь, оказывает большее отталкивающее действие на другие пары электронов, чем связываю щие пары, которые занимают более ограниченные двухцентровые орбитали (рис. 6-3). Валентный уровень атомов элементов второго периода (Т1—Не) заполнен, когда он содержит четыре пары электронов, тогда как валентный уровень атомов элементов третьего н последующих периодов может содержать и более четырех пар электронов. Когда заполненные орбитали соприкасаются, силы Паули возрастают очень быстро, так как они изменяются обратно пропорционально межэлектронному расстоянию в некоторой высокой степени . [c.225]

    Вследствие квантово-механического взаимодействия этих электронов они сближаются и взаимно связывают друг друга — атомы нуль-валентны. Но при подведении соответствующего количества энергии извне эту пару электронов можно разъединить (распарить) и сделать атомы валентными. [c.101]

    Если данная электронная пара связывает два атома, она занимает меньший объем, чем в том случае, когда второго партнера нет, т. е. объем облака неподеленной пары больше объема связывающей пары. Чем более электроотрицателен партнер данного атома, тем сильнее он сжимает электронное облако, тем меньше объем, занимаемый парой. Для непереходных элементов (см. гл. 4, 1) эти соображения (теория отталкивания электронных пар валентных орбиталей, сокращенно теория ОЭПВО) оказались полезны и с их помощью удалось представить геометрическую структуру ряда соединений. Так, для соединений, указанных в табл. 5, теория ОЭПВО правильно предвидит их структуры. [c.135]

    Химики давно уже связывали различие в свойствах типичных неорганических и органических соединений с существованием разных видов химической связи в этих соединениях. Как известно, соединения, подобные хлориду натрия, диссоциируют на ноны не только в водном растворе уже в твердой соли в узлах кристаллической решетки находятся не атомы, а катион натрия и анион хлора, притягивающиеся друг к другу электростатическими силами. Ионы образуются из атомов путем передачи внешних (валентных) электронов, Так, атом натрия способен легко отдавать свой единственный внешний электрон и превращаться в катион. Атом хлора, наоборот, принимает один электрон, превращаясь в анион. В результате этого процесса внешние электронные слои обоих атомов приобретают строение электронной оболочки инертных газов, создаются устойчивые восьмиэлектронные группировки, так называемые октеты электронов. Такой тип связи называется гетерополярным или ионным  [c.77]

    Валентностью называют способность атома химического элемента образовывать определенное число ковалентных связей. Численно валентность элемента в данном соединении равна числу электронных пар, которые связывают атом этого элемента с другими атомами. [c.46]

    Металлы характеризуются специфическим блеском, высокой электропроводностью, теплопроводностью и пластичностью. В то же время пары металлов — такие же диэлектрики, как и инертные газы, и отличаются от последних сравнительно малой энергией ионизации. Большая электропроводность и теплопроводность металлов, их термоэлектронная эмиссия обусловливается наличием свободных электронов. Считают, что при сближении атомов в процессе формирования металла происходит делокализация валентных электронов. Металл рассматривается как система правильно расположенных в пространстве положительных ионов и перемещающихся среди них делокализованных электронов. Эти электроны компенсируют силы отталкивания между ионами и связывают их в единую кристаллическую решетку. Металлы отличаются большой прочностью связи, мерой которой служит теплота сублимации, т. е. энергия, которую необходимо затратить для разделения твердого металла на изолированные атомы. Значение этой энергии достигает 836 кДж/моль. [c.167]

    Интерметаллические соединения весьма многочисленны и разнообразны по свойствам. В основе их классификации лежат факторы объемные (наиболее выгодное соотношение объемов атомов, образующих соединение), электронные (комбинации элементов, обеспечивающие строго определенную концентрацию электронного газа в металле), валентные (комбинации металлических атомов, которые связываются валентными связями) и др. [c.344]

    В рамках классич. теории хим. строения К. с. объясняется как образование электронных пар, общих для связываемых атомов и достраивающих их электронные оболочки в молекуле до замкнутых (с числом электронов 8, 18 и т.д.). Квантовохим. описание К. с. проводят обычно в рамках метода валентных связей (валентных схем) или методов мол. орбиталей. В последнем случае К. с. связывают с мол. орбиталью, локализованной в области, охватывающей неск. (два, три и т. д.) ядер (двухцентровые, трехцентровые и т. д. связи). Такая мол. орбиталь м. б. заполнена одним или двумя электронами. Все электроны молекулы одинаковы, однако обычно считают, что при образовании электронной пары от каждого атома на мол. орбиталь поставляется по одному электрону, и отдельно выделяют случай донорно-акцептор- [c.420]

    У в-в, состоящих из П. м., поляризация обусловлена смещением электронной плотности под влиянием поля и ориентацией молекул в поле. Ориентации молекул препятствует тепловое движение, поэтому изучение зависимости поляризации от т-ры позволяет определять дипольный момент молекул (ур-ние Ланжевена-Дебая см. Диэлектрики). Для двухатомных молекул полярность часто связывают с приближенным представлением электронной волновой ф-ции в рамках валентных связей метода как суммы двух слагаемых, одно из к-рых отвечает ковалентной схеме, другое-ионной валентной схеме. Такое соотнесение позволяет ввести понятие о степени ковалентности или степени ионности хим. связи, причем полярность связи определяется в осн. ионной составляющей. Для многоатомных молекул также возможно подобное приближенное выделение в электронной волновой ф-ции ковалентной и ионной составляющих. [c.68]

    Многие промышленные твердые катализаторы (окислы металлов и металлы, покрытые пленкой окислов — сульфиды металлоорганические полимеры) принадлежат к классу полупроводников их каталитические свойства обусловлены электронными процессами, имеющими место в полупроводниках. Каталитическое действие полупроводников рассматривается следующим образом кристаллическая решетка катализатора — полупроводника имеет определенную концентрацию свободных электронов и дырок (места кристаллической решетки, не заня-, тые электронами), участвующих в каталитическом процессе н выполняющих функцию свободных валентностей, как положительных, так и отрицательных. Весь кристалл катализатора рассматривается как полирадикал , обладающий свободными валентностями. Соотношение между различными формами активированной адсорбции (хемосорб ии) определяется концентрацией свободных электронов или дырок. При активированной адсорбции электроны реагирующих молекул связываются электронами и дырками твердого тела в единую систему за счет свободных валентностей поверхности> [c.172]

    Следовательно, -электроны металла не так легко участвуют в образовании связи с окисью углерода в качестве лиганда. Поэтому л-характер связи металл — углерод мал, и связь углерод — кислород соответственно более прочная. Таким способом было дано объяснение опытам Эйшенса и Плискина (1958), в которых полоса валентного колебания карбонила окиси углерода, адсорбированной на железе, смещалась в сторону высоких частот на 160 см после добавления кислорода. Эйшенс и Плискин (1957) нашли, что для появления полосы поглощения при 2193 см к системе никель — окись углерода необходимо добавить кислород. Отсюда не следует, что много кислорода внедряется в поверхностные соединения окиси углерода, или, что эти соединения адсорбируются на поверхностном атоме или ионе кислорода. Объяснение, вероятно, связано со способностью кислорода связывать -электроны металла и таким образом делать их недоступными для образования л-связи с окисью углерода. В этом случае имеется только а-связь углерод — металл, удерживающая окись углерода на поверхности. [c.97]

    Атомы элементов третьего и следующих периодов часто не подчиняются правилу октета. Некоторые из них обнаруживают поразительную способность связываться с большим числом атомов (т. е. окружаться больщим числом электронных пар), чем предсказывает правило октета. Например, фосфор и сера образуют соединения PF5 и SF соответственно. В льюисовых структурах этих соединений все валентные электроны тяжелого элемента используются им для образования связей с другими атомами  [c.475]

    Валентность химических элементов. Под валентностью, как известно, понимают способность атомов данного элемента соединяться с атомами другого элемента в определенных соотношениях, За единицу валентности была принята соответствующая способность атома водорода. Валентность элемента определяли как способность его атома присоединять (или замещать) то или иное число атомов водорода. В связи с возникновением и развитием теории строения атома и химической связи вален гность стали связывать с соответствующими структурно-теоретическими представлениями, а именно с числом электронов, пере-ходян их от одного атома к другому, или с числом химических связей, Bi.l.зпикaк)Lми.x мсж.ау атомами в процессе образования химического соединения. [c.44]

    Два электрона а,- связывают атомы Хе и Р, а два других а" являются несвязывающими — они 2р2 принадлежат атомам фтора. Таким образом, в рамках привычных представлений,о двухэлектронной связи считать ксенон двухвалентным пель )я, а потому нельзя и изображать строение молекулы Хер2 с помощью валентных штрихов. [c.80]

    Эти упрощенные теоретические рассуждения можно перенести на реальные молекулы, что позволяет создать некоторые модельные представления об электронно-каталитических реакциях на поверхности. Для примера можно рассмотреть оЬщий случай поверхностного превращения молекулы АВ, состоящей из двух атомов или двух групп атомов [61]. Встреча такой молекулы со свободным электроном или свободной дыркой приводит к деформации или диссоциации молекулы на радикалы А я В (рис. 40). В результате диссоциации один из радикалов (например, радикал А) адсорбируется и связывается с поверхностью прочной двуэлектроннон связью за счет собственного электрона и электрона положительной валентности или путем захвата электрона от дырки. Вторей продукт диссоциации, обладая ненасыщенной валентностью, уходит в газовую фазу или адсорбируется слабой связью (рис. 39,/). [c.162]

    Элементы группы 5А имеют валентную конфигурацию атомов ns np , где п принимает значения от 2 до 6. Они достигают конфигураций соответствующих благородных га зов, присоединяя три электрона, и переходят в состояние окисления — 3. Однако ионные соединения этих элементов, содержащие ионы Х- , неизвестны, за исключением солей наиболее активных металлов, как, например, NajN. Чаще всего элементы группы 5А приобретают октет электронов в результате образования ковалентных связей. В соединениях они имеют степень окисления от — 3 до -Ь 5 в зависимости от того, атомы каких элементов и в каком количестве связываются с ними. [c.313]

    Таким образом, металлические кристаллы образуют элементы, у которых число валентных электронов мало по сравнению с числом вален1ных орбиталей. Вследствие этого химическая связь в металлических кристаллах сильно, аелокалнзова-иа. Движение многих электронов в иоле многих ядер энергетически выгоднее, чем движение каждого электрона 15 иоле одного ядра. Электронная плотность связывает все атомные остовы. Наличие общих электронов упорядочивает систему Весь кристалл рассматривают как полимерную молекулу, в которой электроны движутся по молекулярным орб1паляи. [c.64]

    Теория отталкивания валентных электронных пар связывает пространственное размещение атомов вокруг центрального атома с числом электронных пар, образовавшихся в валентной оболочке этого атома. При этом принимают во внимание также и неподеленные пары, поэтому в общем виде молекулу записывают как АХпЕт (Е — неподеленная электронная пара, А — центральный атом / —одновалентный лиганд, т. е. атом, связанный с атомом Л). Например, символ АХ2Е2 обозначает молекулу Н2О. Электронные пары в валентной оболочке испытывают взаимное отталкивание и поэтому принимают такую конфигурацию, в которой они максимально удалены друг от друга. Конкретное правило этой теории гласит две электрон- ООО ные пары располагаются линейно, три — направлены к вершинам правильного треугольника, четыре — к вершинам тетраэдра, пять — тригональной бипирамиды, шесть — октаэдра (рис. 5.15). [c.143]

    Существуют также соединения, в которых на каждую связь приходится меньше двух электронов. Для молекулярного иона водорода Нз+ энергия связи составляет 267 кДж/моль при длине ее 0,106 нм. Это стабильно существующее образование, связь между. "1ротонами которого осуществляет один-единственный электрон. Другим примером вещества с дефицитом валентных электронов может служить молекула диборана (борэтан) ВгНб. В отличие от этана СгНб в молекуле диборана всего 12 валентных электронов. (6 от двух атомов бора и 6 электронов от атомов водорода). Изучение свойств диборана позволило установить строение его молекулы (рис. 54). Атомы водорода, через которые связываются два атома бора, называются мостиковыми. На рис. 54 мостиковые атомы водорода связаны с бором пунктирными линиями. Кроме того,, мостиковые атомы водорода лежат на плоскости, перпендикулярной плоскости расположения атомов бора. По своей геометрии ди-боран представляет собой два тетраэдра с общим ребром из мос-тиковых атомов водорода. Каждый мостиковый атом водорода образует две мостиковые связи Как видно из рис. 54, в молекуле диборана восемь межатомных связей, которые обслуживают всего лишь 12 электронов (вместо 16). Это возможно потому, что каж- [c.118]

    Гибридизацией орбиталей объяснжггся и тот факт, что валентные углы связей у молекул воды и aMMHfiKa меньше тетраэдрического (см, рис, 3.3 и 3.4). Как и в случае образования метана, при образовании молекул воды и аммиака происходит. р -гибриди-зация атомных орбиталей агомов кислорода и азота. Но у атома углерода все четыре ip 1-орбитали заняты связывают,ими электронными парами (см. риг. [c.81]

    Гипотеза Григоровича. По мнению В. К. Григоровича, расположение атомов в твердых и жидких простых веществах определяется, в основном, их электронным строением [8]. В металлической решетке, где внешние электроны положительных ионов сильно возбуждены вследствие возмущающего действия соседних атомов, сравнительно небольшой прирост температуры может быть достаточным для наступления перекрытия и обменного взаимодействия внешних р оболочек ионов, не перекрывающихся при низких температурах ([8], стр. 202). Так, например, объемноцентрированная кубическая структура натрия, область существования которой простирается от 30 К до температуры плавления, по Григоровичу, может быть объяснена с помощью следующих соображений. Из экспериментальных данных (об оптических свойствах, эффекте Холла и т. д.) известно, что натрий в твердом и жидком состоянии имеет один электрон проводимости на атом. Это означает, что его валентный электрон с Зз уровня переходит в электронный газ. Атомы натрия в конденсированном состоянии имеют внешнюю 25 2р оболочку. Взаимодействие ионов с электронным газом приводит к сближению и перекрыванию р-орбиталей внешних р оболочек ионов, в результате чего возникают обменные / вухэлектронные о-связи, направленные по трем осям прямоугольных координат. Образование шести связей каждым атомом со своими соседями приводит к простой кубической ячейке со свободным объемом в центре, который может быть заполнен таким же ионом. Так, из двух простых кубических под-решеток, энергетически невыгодных, а потому редко реализующихся в металлах, образуется ОЦК структура, одна из трех типичных металлических структур. Гипотеза Григоровича иллюстрируется рис. 43. Точно так же обосновывается возникновение ОЦК структур и у других щелочных металлов. Для лития, ионы которого имеют 15 оболочку, возникновение ОЦК структуры связывается с предположением о переходе 8 электронов на р уровни. [c.175]

    Существуют также соединения, в которых на каждую связь приходится меньше двух электронов. Для молекулярного иона водорода энергия связи составляет 267 кДж/моль при длине ее 0,106 нм. Это стабильно существующее образование, связь между протонами в котором осуществляет единственный электрон. Другим примером вещества с дефицитом валентных электронов может служить молекула диборана (борэтан) ВгНе- В отличие от этана СгНе в молекуле диборана всего 12 валентных электронов (6 от двух атомов бора и 6 от атомов водорода). Изучение свойств диборана позволило установить строение его молекулы (рис. 48). Атомы водорода, через которые связываются два атома бора, называются мастиковыми. На рис. 48 мостиковые атомы водорода связаны с бором пунктирными линиями. Кроме того, мостиковые атомы водорода лежат на плоскости, перпендикулярной плоскости расположения атомов бора и остальных четырех атомов водорода. По своей геометрии диборан представляет собой два тетраэдра с общим ребром из мостиковых атомов водорода. Каждый мостиковый атом водорода образует две мостиковые связи. Как видно из рис. 48, в молекуле диборана восемь межатомных связей, которые обслуживаются всего лишь 12 электронами (вместо 16). Это возможно потому, что каждый мостиковый атом водорода может образовать с двумя атомами бора двухэлсктронную трехцентровую связь В—И—В. При образовании последней возможно перекрывание двух гибридных ярЗ орбиталей от двух атомов бора и -орбитали атома водорода (рис. 49). Ввиду изогнутости мостиковой связи В---И—В и ее иногда называют "банановой" связью  [c.87]

    Одно из существ, св-в К. с.-ее насыщаемость при ограниченном числе валентных электронов в областях между ядрами образуется ограниченное число электронных пар вблизи каждого атома. Именно это число тесно связано с традиц. понятием валентности атома в молекуле. Др. важное св-во К. с.-ее направленность в пространстве, проявляющаяся в примерно одинаковом геом. строении родственных по составу мол. фрагментов. Напр., фрагмент СН2 в разл. насыщ. углеводородах имеет примерно одно и то же строение. Направленность К. с. часто связывают с гибридизацией атомных орбиталей, из к-рых составляется мол. орбиталь, отвечающая К. с. [c.420]


Смотреть страницы где упоминается термин Связывающие электроны и валентность: [c.147]    [c.145]    [c.95]    [c.138]    [c.206]    [c.159]    [c.99]    [c.9]    [c.190]    [c.48]    [c.498]    [c.47]   
Теоретическая химия (1950) -- [ c.346 , c.347 ]




ПОИСК





Смотрите так же термины и статьи:

Валентные электроны

КАО связывающая

Электронная связывающая

Электроны валентные электроны

Электроны связывающие



© 2024 chem21.info Реклама на сайте