Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модуль упругости Ползучесть

    Перечни показателей включали характеристики твердости, модуля упругости, ползучести, кратковременной и длительной прочности, ударной вязкости, усталостной прочности, коэффициента трения, износостойкости, теплостойкости и хрупкости. На базе этих рекомендаций был определен объем данных о механических свойствах, -который приводился -в паспортах яа полимерные материалы [2], издававшихся в химической и других отраслях промышленности. [c.301]


    Однако эти материалы имеют и ряд недостатков малый модуль упругости, ползучесть при длительном воздействии нагрузок, невысокую теплостойкость. [c.149]

    По сравнению с металлами у пластмасс коэффициент термического расширения в 8—15 раз больше, коэффициент теплопроводности в 200—400 раз меньше, модуль упругости в 10—20 раз ниже. Кроме того, пластмассы имеют склонность к ползучести при действии постоянной нагрузки и способность поглощать влагу до 12%. С учетом этих свойств пластмассовые вкладыши конструируются в виде втулок с разрезами различной формы. Разрезы и пустоты позволяют уменьшить влияние свойств пластмасс на работоспособность вкладыша. [c.64]

    Построенная модель процесса набухания использовалась сначала для поиска реологических характеристик системы сополимер — растворитель модулей упругости Ей и кинетической ползучести X. Для проверки адекватности модели использовались экспериментальные данные по движению оптической и фазовой границ. Затем при известных значениях Еш и у. модель рассчитывалась для определения параметров состояния системы в процессе ее набухания. Результаты расчета представлены на рис. 4.13— 4.17. [c.322]

    Проверка адекватности модели кинетики набухания осуществлялась на основании экспериментальных данных о положении оптической и фазовой границ. Для проверки адекватности использовался средний квадрат отклонения между экспериментальными и расчетными данными положения оптической и фазовой границ. Результаты проверки показывают, что моделирование деформации механических свойств полимера в процессе его ограниченного набухания, основанное на представлении системы сополимер — растворитель как сплошной среды с одним внутренним релаксационным процессом, вполне допустимо (погрешность не превышает +9%). Параметрами реологических уравнений являются модуль упругости среды и кинетический коэффициент ползучести, характеризующий внутреннюю подвижность макроцепей сополимера. Наряду с этим предлагаемая модель допускает (при необходимости) дальнейшее уточнение характеристик среды на основе более углубленного исследования реологических свойств системы сополимер — растворитель . [c.328]

    Коэффициент G, который называется модулем упругости (в данном случае на сдвиг), характеризует реологические свойства материала до тех пор, пока т не превысит предела прочности или ползучести материала. Упругие деформации обратимы, т. е. они исчезают при т=0. [c.152]


    При плавлении твердого тела происходит скачок в величине текучести. Наличие этого свойства не является качественным отличием жидкости от твердого тела, так как последнее обладает ползучестью. Вместе с тем механизм ползучести совершенно отличен от механизма текучести. Наличие упругости у твердого тела ие является его качественным отличием от жидкости. Жидкость также можно упруго расширять и сжимать. Од1 ако измерению подобных явлений изменений препятствует текучесть жидкости. Если, однако, тщательно заполнить жидкостью некоторый, предварительно откачанный сосуд, а затем охладить его, то жидкость не оторвется от стенок из-за уменьшения объема и окажется растянутой. Такнм путем измеряли модуль упругости жидкости. Потеря дальнего порядка при плавлении определяет скачкообразное изменение свойств жидкости. Объяснение скачкообразности переходов является одной пз задач теории жидкого состояния. Основным отличием жидкости от газа является наличие границы между жидкого  [c.207]

    Соотношение фенольной смолы и поливинилацеталя может колебаться от 0,3 1 до 2 1 в зависимости от требуемых значений модуля упругости, прочности при растяжении, ползучести и термостойкости. Повышению физико-механических показателей способствует увеличение молекулярной массы термопластичного компонента. Вместе с тем для того, чтобы клей имел высокие адгезионные и когезионные характеристики, необходимо в процессе отверждения композиции обеспечить смачиваемость и достаточно прочное сплавление компонентов, что облегчается при более низких значениях молекулярной массы смолы. [c.251]

    Реология битумов изучена недостаточно. Основными показателями, определяемыми при исследовании реологических свойств дорожных битумов в диапазоне температур приготовления и укладки смеси, а также эксплуатации покрытия от —60 до 4-180 °С, являются вязкость и деформативные характеристики битума (модуль упругости, модуль деформации и др.). Поведение битумов под действием внешних деформирующих сил определяется комплексом механических свойств, которые можно изучать, руководствуясь работами П. А. Ребиндера и его школы [205]. К этим свойствам относятся вязкость, упругость, пластичность, хрупкость, усталость (изменение свойств под воздействием нагрузки), ползучесть и прочность. Каждое из этих свойств зависит от температуры и характера напряженного состояния и связано с межмолекулярными взаимодействиями и наличием структуры [207]. [c.58]

    Ползучесть ориентированных стеклопластиков в направляемых армирования невелика, и снижение модуля упругости на базе 10 ч составляет 10— 15 %. Ползучесть ортотропных стеклопластиков под углом 45 к направлениям армирования при растяжении, изгибе, сжатии и сдвиге хорошо описывается зависимостью [c.200]

    Для Б. характерны высокие значения модуля упругости, усталостной прочности и др. мех. св-в (см табл), малая ползучесть (до 0,2%) в направлении ориентации нитей. При длительном (до 10 лет) воздействии воды, смазочных материалов, атмосферных факторов мех. св-ва Б. снижаются не более чем на 10-15%. Уровень рабочих т-р и ресурс эксплуатации изделий определяются термостойкостью свя- [c.309]

    Кроме того, для полимеров больше, чем для металлов, имеет значение длительность действия нагрузки. Если к полимерному материалу прикладывают постоянное усилие, то материал обнаруживает деформацию е уже в момент нагружения, причем деформация возрастает во времени. Этот процесс называется ползучестью. Если же образец растягивают на постоянную величину, то возникает начальное напряжение а, которое постепенно убывает во времени. Этот процесс называется релаксацией напряжения. Так как а и 8 являются функциями времени, небезразлично, при каких условиях определяется модуль упругости. [c.99]

    Сообщение Л. М. Волковой на Всесоюзном совещании 1973 г. по пентапласту (в г. Черкассы) о влиянии воды и растворов уксусной кислоты при разных темлературах и напряжениях на скорость ползучести и модуль упругости пентапласта. [c.92]

    Расчет модуля упругости по данным, полученным этим методом, не рекомендуется, так как коэффициент X меняется при переходе от материала к материалу и от температуры к температуре. Кроме того, при этом методе испытаний данные могут быть получены на основе деформаций, лежащих за пределами пропорциональности, вследствие чего могут быть получены неправильные значения Е. Значения модуля, полученные по этому методу несколько искажаются вследствие ползучести, поскольку испытания проходят длительное время. [c.293]

    При этом не обязательно ограничиваться обсуждением только свойств, не зависящих от времени. Коэффициенты податливости и модули упругости могут зависеть от времени, характеризуя податливость при ползучести и релаксационную жесткость в экспериментах со ступенчатым нагружением или комплексную податливость и жесткость при динамических измерениях. Для простоты обычно тщательно стандартизуют методы измерения, определяя, например, податливость при ползучести при одинаковой программе нагружения в течение одной и той же длительности нагружения. При таких измерениях существует точное соответствие между упругим и линейным вязкоупругим поведением, как это предполагал Био [1]. [c.210]


    С другой стороны, эмульсии В/М имеют высокие вязкости в стационарном состоянии нри очень низких скоростях сдвига, вызванные флокуляцией при малых разделяющих расстояниях. Например, в опытах по ползучести в вискозиметре с коаксиальными цилиндрами эмульсия В/М (50% -Ь 50%) с = 1,4—1,8 жкм имела вязкость в пределах (2,0—2,5) 10 гез и модуль упругости 1200—2300 дин/см (Шерман, 1965). [c.253]

    Итак, в первом приближении можно считать, что целесообразность применения стеклянного волокна для армирования связана с высокими значениями его прочности, модуля упругости, сопротивления ползучести, стабильностью размеров и способностью повышать ударную вязкость хрупких материалов. [c.278]

    В табл. 121 и 122 приведены значения модуля упругости, ползучести и длительной прочности тантала в зависимости от температуры [36, 65]. Модуль упругости тантала при сдвиге равен 7000 кГ1мм . а коэффициент Пуассона 0,35 [43]. [c.79]

    В общем же деформируемость полимеров в стеклообразном состоянии, естественно, много меньще, чем в высокоэластичпом. Модуль упругости линейных полимеров в стеклообразном состоянии обычно не превыщает модуля упругости дерева (ели). При длительных статических нагрузках у полимеров (даже при температурах ниже температуры стеклования) наблюдается ползучесть, тоже связанная с релаксационным характером деформаций. Это необходимо всегда иметь в виду, так как у стали и большинства других металлов ползучесть становится заметной только при высоких температурах, а у полимеров она во многих случаях обнаруживается даже при обычных или умеренно повышенных температурах. Это объясняется недостаточно прочной связью между цепями и способностью их распрямляться под действием внешних сил. [c.586]

    А г призер =1,5 мкм, капли с диаметром < 0,5 мкм, для которых много ниже, флокулировали в первичном максимуме, а капли с диаметром 1,5 мкм и больше — во вторичном. Анализ характера ползучести этих эмульсий указал на существование двух различных сил связи. В этом случае модуль упругости для частиц, флокулирующих в первичном минимуме, составил только —200 duHj M , а ньютоновская вязкость 10 —10 /гз. [c.254]

    В момент Tl приложения нагрузки происходит деформация еь которой соответствует условно-мгновенный модуль упругости ) = Я/е . В дальнейшем под действием неиз.менного наиряжсиия развивается деформация, называемая ползучестью, В результате ползучести деформация цементного камня нод постоянной нагрузкой продолжается в течение нескольких лет. Если нагрузку снять в момент времени тг, то упругая деформация ei исчезает со скоростью звука. Затем относительно медленно снимается деформация б2, которой соответствует модуль медленной эластической деформации Ег=Р г2- Процесс снятия деформации еа называется упругим носледействнем. Остаточная деформация йз остается как результат ползучести. Эта необратимая деформация является следствием нарушения части контактов в структуре. Пластическая (необратимая) деформация появляется мгновенно, если приложенное напряжение превышает предел истинной упругости цементного камня. Чем моложе структура цементного камня, тем меньше Ei и тем больше способность цементного камня к пластической деформация ползучести. [c.134]

    Трещины серебра напоминают пеиу с открытыми ячейками, диаметр полостей и участков полимера которой в среднем равен 20 нм. При дальнейшем растяжении продолжается процесс образования трещин серебра. Уменьшение модуля упругости и предела вынужденной эластичности с увеличением деформации объясняется уменьшением плотности, вызванного этой деформацией, и последующего увеличения коэффициента концентрации напряжения на микроскопических элементах полимера, содержащего трещины серебра. Высокие скорости восстановления материала с трещинами серебра после ползучести определяются в основном его поверхностным натяжением и большой внутренней удельной площадью поверхности таких трещин [c.365]

    Е —(Модуль упругости первого рода к —(коэффициент неустановившейся ползучести в на(пра(вленил, па/раллельном (перпевдикуляр-(НО М оси (прессования. [c.124]

    И. обладают больщей оптич. прозрачностью, имеют более высокие модули упругости в стеклообразном состоянии и прочности при растяжении, чем соответствующие неионизованные сополимеры. Для И. характерны повышенные ползучесть, тепло- и электропроводность, они обладают фунгицидными св-вами, способны ослаблять действие ионизирующих излучений, устойчивы к действию жиров, растит, и минер, масел, р-рителей. [c.262]

    П.-очень гибкий материал (модуль упругости 500-900 МПа) < р.ст 15-40 МПа. Твердость П. ниже, чем у полипропилена и полиэтилена высокой плотности. Он стоек к растрескиванию под нагрузкой, обладает низкой ползучестью (в 150 раз меньшей, чем у полиэтилена, при одинаковых нагрузках), высокими износостойкостью и долговрем. прочностью (соотношение долговечностей П., полипропилена и полиэтилена составляет 100 25 1), его морозостойкосгь ва 20-25 °С выше, чем у полипропилена. Термич. коэф. линейного расширения и теплопроводность П. практически не меняются в интервале т-р 0-100°С. [c.614]

    Блокированные П. термостойки до 250 °С, но подвергаются термоокислит. деструкции при 160 °С. Поэтому для переработки П. в него вводят стабилизирующие добавки-антиоксиданты фенольного типа и термостабилизаторы, связывающие выделяющийся при разложении Ф. Сополимеры отличаются более высокой термо- и хим. стойкостью, чем ацетилированный П. Однако уже при введении 2-3% сомономера степень кристалличности П. снижается до 60%, т. пл.-до 164-166 С, что приводит к уменьшению на 10-15% модуля упругости и к нек-рому росту ударной вязкости. Остальные св-ва не изменяются, поэтому гомо-поЛимер и сополимеры считают материалами одного типа (известны под общим назв. полиформальдегид ). Для П. характерны высокая усталостная прочность к знакопеременным нагрузкам, стабильность размеров изделий и низкая ползучесть, высокая износостойкость. Его можно использовать от —40 до 100 °С. Мех. и дюлектрич св-ва П. мало зависят от влажности. Нек-рые св-ва П. приведены ниже  [c.36]

    Информация о ММР позволяет выяснить свойства полимеров, определяющие их пригодность для производства изделий определенного назначения. Найдены [61, 62] зависимости между молекулярной массой (ММР) и такими механическими свойствами полимеров, как соотношение напряжение - деформация (условная прочность при растяжении, относигельное удлинение, предел вынужденной эластичности, хрупкость и модули упругости), ударопрочность, растрескивание и образование микротрещин, усталостные свойства, ползучесть и релаксация напряжения и др. Установлена [63] взаимосвязь между основными характеристиками полимеров - молекулярной массой М, нолидисперсностью Д, степенью разветвленности Р - и свойствами полимеров С - условной прочностью при растяжении, вязкостью концентрированных растворов, начальной вязкостью расплава  [c.113]

    Ясно, что для разрушения показанных трех типов ориентированных структур нужны разные интенсивности и длительности воздействия. Кроме того, прочность и модуль упругости должны расти с увеличением числа проходных цепей. Но, как выяснилось относительно недавно, только это и ясно. Правда, одно уточнение мы можем сделать сразу. В структурах типа б и е по мере деформации (удлинения), а для простоты мы будем считать, что микро- и макродеформация равны или линейно коррелируют, в дело будут вступать не все проходные цепи сразу, а лишь наиболее растянутые, т, е. держащие основную нагрузку. Если разрушение ориентированного полимера при растяжении является результатом последовательных разрывов таких цепей, то, в принципе, из серии опытов по определению долговечности (подробно см. [51]) или измерений ползучести можно оценить распределение проходных цепей по длинам. [c.370]

    Проще всего истинный модуль упругости вычисляется как отношение заданной величины напряжения к равновесной величине деформации материала. Деформация изменяется во времени по экспоненциальному закону, и ее равновесное значение определяется как предельная величина деформации, достигаемая по истечении достаточно большого времени по сравнению со временем релаксации. Практически это величина деформации, которая перестает ) еличиваться с течением времени. При этом нужно убедиться, что материал не подвержен ползучести — медленной деформации — даже при малых или умеренных напряжениях. Она проявляет себя как медленное, пропорциональное времени увеличение деформации, в отличие от экспоненциального закона приближения деформации к ее предельной величине. [c.817]

    Несомненно, что нагрузка усиливает действие среды на пентапласт. Сообщалось, что вода и разбавленная уксусная кислота сильнее действуют на ползучесть и модуль упругости 1напряженното пентапласта, чем концентрированная кислота. Для кипящей 98%-ной уксусной кислоты было установлено [91, с. 74], что время до рас- [c.92]

    При введении в пентапласт минеральных наполнителей увеличиваются модуль упругости, твердость, теплостойкость, улучшаются прочностные свойства, снижаются усадка, термический коэффициент линейного расширения, ползучесть под нагрузкой, уменьшается стоимость изделий. Перспективными наполнителями для пентапласта являются графит, микроизмельченная слюда, стекловолокно, окись хрома и др. Показатели основных свойств наполненного пентапласта приведены в таблице. , [c.274]

    На основе поверочных расчетов определяется допустимость принятых конструктивных форм, технологии изготовления и режимов эксплуатации если нормативные требования поверочного расчета не удовлетворяются, то производится изменение принятых решений. Для реализации расчетов по указанным выше предельным состояниям в ведущих научно-исследовательских и конструкторских центрах был осуществлен комплекс работ по изучению сопротивления деформациям и разрушению реакторных конструкционных материалов. При этом для вновь разрабатываемых к применению в реакторах металлов и сплавов (низколегированные тепло-и радиационно-стойкие стали, высоколегированные аустенитные стали для тепловьщеляющих элементов и антикоррозионных наплавок, шпилечные высокопрочные стали) исследовались стандартные характеристики механических свойств, входящие в расчеты прочности по уравнениям (2.3), — пределы текучести ао, , прочности, длительной прочности и ползучести o f. Наряду с этими характеристиками по данным стандартных испытаний определялись характеристики пластичности (относительное удлинение 6 и сужение ударная вязкость й , предел выносливости , твердость, модуль упругости Е , коэффициент Пуассона д, а также коэффициент линейного расширения а. [c.38]

    Здесь О — релаксационный модуль С и У —действительные компоненты динамических функций — комплексного модуля упругости и податливости,— характеризующие упругие свойства материала J— податлиность при ползучести. Все ати велич(гны определены при сдвиге в отличие от предыдущих работ, где аналогичные величины рассматривались для деформации одноосного растяжения,— Прим. ред. [c.45]


Смотреть страницы где упоминается термин Модуль упругости Ползучесть: [c.280]    [c.80]    [c.171]    [c.80]    [c.427]    [c.98]    [c.206]    [c.157]    [c.41]    [c.267]    [c.49]    [c.78]    [c.188]    [c.254]   
Графит и его кристаллические соединения (1965) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Модуль

Ползучесть

Упругий модуль



© 2025 chem21.info Реклама на сайте