Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механические свойства при больших деформациях

    Рассмотрим пример регулирования структурно-механических свойств 10%-ной суспензии черкасского монтмориллонита, характеризующегося большой лабильностью в водных системах и не удовлетворяющего нормальным условиям бурения нефтяных и газовых скважин. Анализ структурно-механических свойств показал, что данная суспензия принадлежит к пятому структурно-механическому типу и развивает очень малые относительные быстрые эластические и большие пластические деформации (рис. [c.249]


    Для понимания механизма влияния адсорбционно-активных металлических расплавов на механические свойства твердых металлов недостаточно сравнить результаты растяжения монокристаллов на воздухе и в присутствии расплава. Разрыву чистого монокристалла предшествует очень большая пластическая деформация образца, поэтому при таких условиях закономерности разрушения качественно иные, чем при хрупком разрыве в присутствии ртутной пленки. Следовательно, хрупкое разрушение с участием поверхностно-активного вещества следует сопоставить именно с хрупким разрушением на воздухе. [c.222]

    Релаксационный характер механических свойств и физических состояний полимеров. Специфика полимеров заключается не только в проявляющейся при определенных условиях способности к большим обратимым деформациям, но также в том, что их механические свойства носят резко выраженный релаксационный характер, т. е. сильно зависят от временной, а в случае периодических деформаций, от частотной шкалы. Эта. зависимость, как и высокоэластичность, является следствием длинноцепочечного строения полимеров и обусловлена необходимостью длительных промежутков времени (времен релаксации) для конформационной перестройки большого числа связанных ме.жду собой структурных элементов цепи при переходе ее из одного равновесного состояния в другое. Время релаксации является функцией температуры и за- [c.40]

    Процесс набухания может вызывать необратимые изменения механических свойств эластомеров за счет ослабления межмолекулярных связей. При малой степени набухания преобладает положительное влияние гибкости цепей, способствующее ориентации, и прочность повышается. Если же эффект повышения гибкости цепей незначителен, то превалирует понижение прочности. Долговечность ненапряженных резин уменьшается тем значительнее, чем больше они набухают. При набухании резин в водных средах в напряженном состоянии (НК, ХП) оказалось, что, наоборот, долговечность их при набухании возрастает. Это явление объясняется облегчением накопления остаточной деформации при увеличении степени набухания, что приводит к уменьшению действующего напряжения [c.117]

    При изменении параметров состояния температуры и давления твердые вещества индивидуального состава могут переходить из одной структурной формы в другую без изменения стехиометрического состава. Примеры таких переходов — обратимые (энантиотропные) и необратимые (монотропные) превращения модификаций ряда простых веществ и соединений (разд. 33.2.2). Предпосылкой таких процессов является подвижность элементов решетки и перенос вещества, вызванный несовершенством строения твердой фазы. Некоторые свойства твердых веществ определяются не только их структурой и характером дефектов, но и строением микрокристаллитов, в том числе их формой, размерами и составом. Особенно большое влияние строение микрокристаллитов оказывает на механические свойства твердого тела, такие, как твердость, пределы пластической деформации. Проведением специально подобранной твердофазной реакции можно добиться направленного изменения структуры. В результате повышения температуры в достаточно длительного нагревания при постоянной температуре (отжига) можно ускорить рост отдельных кристаллических зерен до больших кристаллов и рекристаллизацию, что обеспечивает улучшение некоторых свойств материала. В отдельных случаях рекристаллизация играет отрицательную роль, например приводит к понижению активности некоторых катализаторов. [c.432]


    Большой практический интерес представляет оценка динамики изменения свойств металла в процессе эксплуатации оборудования. Кроме механических и коррозионных факторов повреждаемости в процессе эксплу атации конструкций возможны проявления динамического старения (при циклических нагрузках), термофлуктуационных процессов накопления повреждений и др. В связи с этим в лаборатории физико-механических исследований металлов ВНИИСПТнефть проведены механические испытания металла труб нефтепроводов после различного срока эксплуатации. Независимо от срока эксплуатации нефтепроводов основные механические характеристики не ниже таковых, регламентированных в соответствующих нормативных материалах [219]. При испытаниях обнаруживаются эффекты деформационного старения, в частности, для многих сталей появляется площадка текучести, несколько снижается коэффициент деформационного упрочнения. Однако, эти изменения незначительны. По данным работы [185] в процессе изготовления труб пластические деформации в металле могут достигать порядка 5% и более. Причем, пластические деформации распределяются по периметру трубы крайне неравномерно. Следовательно, при оценке свойств трубных сталей, кроме флуктуации состава и структуры, следует учитывать изменение механических свойств за счет различия степени проявления эффекта деформационного старения. В целом, разброс механических свойств эксплуатированных нефтепроводов не выходит за пределы оценок, полученных на основе результатов испытаний искусственно-состаренных сталей. Кроме того, эти данные косвенно подтверждают зависимости индексов [c.156]

    Размеры структурных элементов существенно влияют на механические свойства полимеров, при этом чем они больше, тем больше напряжение рекристаллизации, больше хрупкость образца и меньше его удлинение [23]. Наилучшие механические свойства достигаются при достаточно малых размерах сферолитов. Естественно, что процесс разрушения структуры полимера при приложении внешней силы, как и процесс ее образования, носит многоступенчатый характер. Это особенно существенно при изучении закономерностей деформации полимеров. При любом малом и кратковременном приложении внешней силы происходит разрушение каких-либо ступеней структуры полимера, которые в различной степени перестраиваются и вновь образуются как в процессе деформирования, так и после его прекращения. Поэтому под процессом рекристаллизации следует понимать любые преобразования как первичной, так и вторичной кристаллической структуры [19]. [c.21]

    Выяснить, есть ли пространственная структура в данном теле, можно с помощью измерения механических свойств или по картине развития деформации сдвига под действием постоянного напряжения, постепенно увеличивающегося от опыта к опыту. Для жидкости при действии сколь угодно малых напряжений за время, большее периода релаксации, устанавливается стационарное течение с постоянной вязкостью, не изменяющейся при возрастании напряжений. [c.175]

    В области полимеров физики вместе с физико-химиками больше всего сделали для создания теории специфических механических свойств, и прежде всего высокоэластичности и прочности. Но и здесь развитие физико-химической механики привело к выяснению закономерностей кинетики развития и спада эластической деформации и релаксации напряжения и возникновения пространственных структур [c.209]

    Одним из характерных механических свойств коагуляционных тиксотропных структур является их пластичность. Пластичные тела под действием внешних сил необратимо изменяют свои размеры и форму, которые после прекращения действия внешних сил самопроизвольно не восстанавливаются. При малых скоростях деформации пластичные тела текут без заметного разрушения структуры. Нарушенные в процессе деформации связи восстанавливаются на новых точках. При больших скоростях деформации (сдвига) [c.368]

    Твердые полимеры в отличие от обычных твердых тел обладают важной особенностью — способностью при больших напряжениях подвергаться так называемым вынужденно-эластическим деформациям, что приводит к возникновению ориентированного состояния полимеров. Все химические волокна и пленки находятся в этом состоянии и обладают ярко выраженной анизотропией структуры и физико-механических свойств. [c.104]

    Реакции сшивания ненасыщенных эластомеров серой и серой с ускорителями представляют большой практический интерес, так как на них основан процесс вулканизации этих эластомеров, являющийся завершающим и наиболее ответственным этапом технологии производства практически всех резиновых изделий. Его результатом является переход растворимой, пластичной, механически непрочной резиновой композиции в нерастворимое состояние с проявлением высокого комплекса механических свойств высокоэластичных материалов, у которых в уникальном виде сочетаются большие обратимые деформации с высокой прочностью и долговечностью (см. ч. 2). [c.303]


    Изучение механических свойств гелей и студней показало, что при малых деформациях эти системы ведут себя как упругие твердые тела. При больщих напряжениях, вызывающих разрушение структурной сетки, они текут как вязкие жидкости. Необходимо отметить, что студни высокой прочности под большим напряжением сдвига способны скорее разрушиться или деформироваться, чем обнаружить подлинное течение. [c.232]

    Пластификация существенно изменяет все механические свойства полимеров- Так, эластичность полимерного материала, т е. способность к большим обратимым деформациям при введения пластификатора возрастает. То же самое происходит и с вынужденной эластичностью. Следовательно для повышения эластичности введение пластификаторов всегда выгодно. [c.439]

    Основной технический показатель очистной машины - выполнение требований, предъявляемых к качеству подготовки перед нанесением изоляционного покрытия, так как от состояния поверхности зависит прочность сцепления (адгезия) покрытия с поверхностью. Обрабатываемую поверхность трубопроводов обычно рассматривают как поверхность кругового цилиндра. В отличие от идеальной (кругового цилиндра) реальная поверхность отличается от цилиндрической в результате появления сварных швов и деформации при изготовлении труб, монтаже трубопровода и др. Наружная цилиндрическая поверхность трубопровода в отличие от идеальной, изображенной на чертежах, никогда не бывает абсолютно гладкой, а всегда имеет неровности с большой (отклонения) и малой (шероховатости) длиной волны (рис. 4). Уменьшение отклонений поверхности можно достичь соблюдением технологических правил погрузки, транспортировки, хранения труб и монтажа трубопровода. Несмотря на исключительно малые размеры неровностей, составляющих шероховатость, они оказывают существенное влияние на прочность и качество изоляционного покрытия. Необходимая для адгезии шероховатость поверхности трубопровода создается при работе очистной машины и зависит от состояния исходной поверхности металла, физико-механических свойств очищаемого слоя загрязнений, конструктивных параметров очистного инструмента, усиления его прижатия к трубопроводу и режимов работы машины. [c.52]

    Большое влияние на механические свойства оказывают кинетические факторы. При высоких скоростях, когда время деформации значительно меньше периода ретардации, может не получить развития [c.245]

    ДЕФОРМАЦИЯ ПОЛИМЕРОВ — способность полимерных материалов значительно изменять свою форму под действием внешних сил, проявляя при этом сцецнфические лишь для них закономерности сопротивления деформации, обусловленные цепным строением макромолекул. Д. п." чрезвычайно резко зависиг от те-мп-ры, а также от динамич. режима воздействия сил, что связано с возникновением при деформации неравновесных состояний (см. Механические свойства полимеров). Деформация аморфных полимеров слагается из упругой, высокоэластич. и пластич. деформаций. Соотношение этих деформаций определяется нриродой вещества, темп-рой и скоростью воздействия сил. Деформация аморфных полимеров при достаточно низких темп-рах (в застеклованном состоянии) прп ие очень больших напряжениях имеет чисто упругай характер. При возрастании растягивающих напряжений происходит либо хрупкое разрушение полимерного стекла (при деформациях от 0,1 до нескольких %), либо развитие больших деформаций норядка 100— 200%. Такая большая деформируемость, часто называемая холодной текучестью, а также вынужденной эластичностью полимеров, ведет к образованию ани-зотронного полимера, сохраняющего свое деформированное состояние после разгружения неограниченно долго. Полное восстановление исходной формы может быть достигнуто нагреванием до температуры стеклования. [c.538]

    Тиокол А применяется для покрытия бетонных резервуароЁ для хранения нефтяного топлива, в качестве защитных покрытий для подводных деталей морских судов — рулей и впнтов. Однако плохие физико-механические свойства вулканизатов, большая деформация при сжатии и неприятный запах ограничивают применение этого тиокола. В настоящее время тиокол А применяется как пластификатор в кислотостойких цементах [7]. [c.570]

    Размеры рассмотренных участков реологической кривой могут быть самыми различными в зависимости от природы системы и условий, при которых проводят испытания механических свойств (например, температуры). В коагуляционных структурах систем с твердой дисперсной фазой предел упругости растет с увеличением концентрации частиц и межчастичного взаимодействия. В этом же наиравлении уменьшается область текучести. Для материалов, имеющих кристаллизационную структуру, например для керамики и бетонов, характерны большая (по напряжениям) гуковская область деформаций и практическое отсутствие области текучести — раньше наступает разрушение материала (хрупкость). Поэтому им не свойственны ни ползучесть, ни тиксотропия. Для полимеров с конденсационной структурой наиболее типичны релаксационные явления, включая проявление эластичности, пластичности и текучести. Доля Гуковской упругости в них возрастает с ростом содержания кристаллической фазы. Наличие области текучести у полимеров объясняют разрушением первоначальной структуры и возникновением определенного ориентирования макромолекул, надмолекулярных образований и кристаллитов. По окончании такой переориентации наблюдается некоторое упрочнение материала, а затем с ростом напряжения материал разруилается. В какой-то степени промежуточными реологическими свойствами между свойствами керамики и полимеров обладают металлы и сплавы. У них меньше области гуковской упругости (по напряжениям), чем [c.380]

    Прочностные свойства резко возрастают за счет образования пространственной сетки из частнц дисперсной фазы. Чем анизо-метричнее форма частнц, тем при меньшей их концентрации образуется пространственная структура. Особенно эффективны в этом отношении волокнистые наполнители, широко используемые в качестве армирующего компонента. Основную часть механических нагрузок на такой материал принимает на себя пространственная сетка из наполнителя, матрица передает эти нагрузки от частицы к частице, и если она мягче наполнителя, то служит кроме того, в качестве амортизатора. Прочностные, упругие и другие механические свойства пространственной сетки, безусловно, зависят от природы наполнителя, дисперсности и формы его частиц. Например, минеральные наполнители увеличивают жесткость материала, рост дисперсности волокон приводит к увеличению упругой деформации. Каучукоподобные наполнители придают материалу эластичность, ударную прочность. Большое значение для долгосрочной службы композиционных материалов имеет снятие внутренних напряжений, способствующих преждевременному разрушению материала. Если в бетонах внутренние наиряжения понижают с помощью вибрации прн твердении или добавлением ПАВ, то у металлов это достигается введением специальных модификаторов (обычно поверхностно-активных), в том числе гетерофазных включений. [c.393]

    Для объяснения сложных механических свойств высокоанизотропных полимерных сеток необходимо иметь простое модельное представление об организации и взаимодействии структурных элементов и об их деформировании. Подобные модельные представления будут полезны при дальнейших исследованиях, в которых придется ограничиться примерами отдельных структурных моделей, поверхностно их касаясь или исключая большую часть других. В этом разделе будут описаны предложенные формы структурных элементов и типы их взаимодействия на основе теорий деформирования композиционного материала. Подобные теории разработаны с учетом поведения при малых деформациях. Они могут быть распространены на теории прочности только в случае определения критериев ослабления, которые становятся эффективными в случае справедливости определенной теории деформирования. [c.43]

    В 1950 г. состоялась Всесоюзная конференция по коллоидной химии, на которой большая часть докладов была посвящена проблеме структурно-механических свойств дисперсных систем. А. С. Колбанов-ская и П. А. Ребиндер определили мгновенный модуль упругости, модуль эластичности, истинную вязкость и вязкость эластичной деформации различных структур. Вместе с О. И. Лукьяновой они исследовали влияние добавок наполнителей и поверхностно-активных веществ на деформационные свойства растворов каучуков. Б, А, Догад-кин, М. И. Резниковский изучили роль межмолекулярных сил в механизме высокоэластичной деформации. Несколько работ по этому вопросу опубликовал Г. М. Бартенев. В 1950 г. Институт физической химии АН СССР выпустил сборник Новые методы физико-химических исследований поверхностных явлений , содержащий статью Б. В. Дерягина, П. А. Ребиндера Новые методы характеристики упруго-пластично-вязких свойств структурированных дисперсных систем и растворов высокополимеров . М. П. Воларович и М. Ф. Никитина исследовали вязкость дорожных битумов. Большое значение для развития физико-химической механики имел выход в свет статьи Н. В. Михайлова и П. А. Ребиндера Методы изучения структурно-механических свойств дисперсных систем . (Колл, ж., 1955, 17, 2, 105). [c.9]

    ИХ беспрепятственный рост в продольном направлении. Макро-скопичеокие механические свойства (деформация при разрыве, кратковременная и долговременная прочность, энергия разрыва) в какой-то степени зависят от числа трещин серебра на площади (поверхности), но все же они сравнимы с соответствующими свойствами хрупкого твердого тела, с деформацией при разрыве, составляющей, 4—5%, и с низкой энергией разрущения. Чтобы заметно увеличить макроскопическую податливость при ползучести и энергию, требуемую для разрыва, следует стимулировать образование больших количеств трещин серебра во всем объеме образца и препятствовать их преждевременному разрыву. Обе цели достигаются путем использования гетерофазных сополимеров или соединений полимеров. [c.385]

    Следует отметить, что сформулированньге условия геометрического и механического подобия обеспечивают тождество напряженных состояний и относительных деформаций не во всех случаях. Отклонения наблюдаются, в частности, при хрупком разрушении, при очень больших различиях в абсолютных размерах образцов (масшта()ный фактор) и в ряде других случаев, каждый из которых имеет свое объяснение. Например, влияние масштабного фактора можно объяснить на основе статистических теорий прочности. Снижение механических свойств при увеличении размеров образцов связывают с увеличением вероятнос-ги существования опасных поверхностных и внутренних дефектов — концентраторов напряжений, вызывающих преждевременную деформацию и эазрушение. [c.250]

    Расплавы полимеров ведут себя как ньютоновские жидкости только при очень малых скоростях сдвига. Более того, как указывалось в разд. 6.3, уравнения ЛВУ ограничиваются очень малыми деформациями. При более высоких скоростях деформаций и при больших деформациях применяются нелинейные определяющие уравнения вязкоупругости типа рассмотренных в разд. 6.3 уравнений ЗФД, Уайта—Метцнера, ГМ, БКЗ, Лоджа или Богью. Только с помощью более сложных уравнений удается полуколичественно описать реологическое поведение расплавов полимеров, остальные согласуются с экспериментом лишь качественно. Тем не менее теория линейной вязкоупругости полезна по следующим соображениям 1) она дает возможность понять, почему полимеры проявляют вязко-упругое поведение, а также качественно показывает тенденции зависимости их механических свойств от времени 2) она объясняет наблюдаемую экспериментально температурно-временную эквива- [c.151]

    Г. Л. Слонимский (1938 г.) в статье О законах деформации реальных материалов делает попытку изложить теорию Максвелла и Больцмана — Вальтерра в применении к таким веществам, как каучук и другие материалы, отличающиеся от идеально упругих тел неравновесными процессами деформации. Начиная с 1935 г., стали появляться работы П. А. Ребиндера и В. Б. Маргаритова по физико-химии и механике каучука и резин, которые в 1937 г. вызвали большую дискуссию на страницах журнала Каучук и резина . Вместе с А. А. Трапезниковым П. А. Ребиндер изучил механические свойства адсорбционных слоев для поверхностно-активных, нерастворимых в воде веществ методом смещения подвешенного на нити диска. Механические свойства растут и достигают максимума при полном насыщении поверхностного слоя. Б. В. Дерягин и другие развили физическую теорию устойчивости дисперсных систем. [c.8]

    Итак, находясь в эластическом состоянии, полимеры обладают выраженной зависимостью механических свойств от продолжительности силового воздействия. Чем дольше действует сила, тем больше деформация, тем меньше модуль, тем мягче полимер. Таким образом, механические свойства зависят как от химической природы полимера, так и от продолжительности действия силы, что определяется кр терием D = xlt. Чем больше критерий О, тем ближе полимер по свойствам к твердому телу. В связи с тем, что свойства полимера определяются критерием О, а величины, в него входящие, т и / можно менять изменением либо температуры, либо частоты действия силы, следует сделать вывод, что свойства полимера эффективно меи.чются с изменением температуры и частоты (времени) действия силы. Отсюда нртщип температурно-временной аналогии, Критерий В упрощенно характеризует полимер, поскольку последнему присуще не одно время релаксации, а набор времен или спектр времен релаксации. [c.141]

    В ковалентных кристаллах подвижность дислокаций при низких температурах ограничена большими значениями напряжений Пайерлса. Так, для Ое и 51 было установлено, что существенная пластическая деформация и заметная подвижность дислокаций обнаруживаются при Т > 0,4 Тпл [1,2]. Теория термоактивационного движения дислокаций в поле напряжений разработана недостаточно, и, как показано в [3, 4], имеются существенные различия между ее выводами и экспериментами. Поэтому необходимы дальнейшие исследования закономерностей деформации ковалентных кристаллов, в том числе и алмаза. Несмотря на широкое применение алмаза в технике в качестве сверхтвердого высокопрочного материала, такие его исследования до настоящего времени не были проведены. Актуальность исследования алмаза в широком температурном интервале связана также с тем, что при нулевых давлениях алмаз является метастабильной модификацией углерода, и поэтому особый интерес представляет изучение влияния графитизации на механические свойства алмаза. [c.150]

    Однако это явление сложнее потому, что релаксация возможна, и при низких температурах, но она требует большого времени — при длительном нагружении полимеров наблюдается крипп (текучесть). На рис. 227 показано появление остаточной деформации при низких температурах (а) и при высоких температурах вблизи температуры текучести (б).. Упругая деформация возникает практически мгновенно и исчезает также, нарастание пластических и упругоэластических деформаций совершается во времени. Механические свойства полимеров зависят от их строения и в первую [c.500]

    Полимеры отличаются от низкомолекулярных веществ значительным временем установления механического равновесия, т. е. большим временем релаксации (от лат. ге-1аха1 о — уменьшение напряжения, ослабление). Поэтому механические свойства полимеров зависят от продолжительности действия сил, вызывающих деформации. Деформация — это изменение формы тела под действием внешней силы (растяжение, сжатие, сдвиг, изгиб, кручение). При упругой (обратимой) деформации тело после прекращения действия внешних сил возвращается к исходной форме. При пластической деформации (необратимой) тело после прекращения действия внешних сил остается деформированным. Отношение силы Р к площади 5, на которую действует сила, называемая напряжением ст  [c.496]

    Металлизационное цинковое покрытие значительно отличается от исходного цинка как по своей структуре, так и по физико-механическим свойствам. В металли-зационном цинковом покрытии содержится большое количество окислов, которые ухудшают его физико-механические свойства. Одновременно с этим оно обладает большой пористостью и повышенной твердостью, имеет неоднородную структуру и меньшую эластичность. Прочность металлизациониого цинка более чем в 3 раза ниже прочности исходного металла. Однако при эксплуатации покрытие обладает достаточной прочностью и разрушается, как правило, за пределами упругих деформаций основного металла. Цинковое покрытие является анодом по отношению к стали, поэтому нет необходимости в получении непроницаемого покрытия, а следовательно, и в увеличении его толщины. При контакте пористого цинкового покрытия с влагой (электролит) в силу неоднородности металла в его порах возникают гальванические пары, приводящие к разрушению цинка. Разрушение цинка продолжается недолго, при этом образуются продукты коррозии, которые быстро заполняют поры покрытия, в результате чего оно становится непроницаемым, и электрохимическая коррозия цинкового покрытия прекращается. Уплотнение цинкового покрытия (пор) происходит и вследствие химических реакций с образованием окислов, гидратов и карбонатов цинка. [c.156]

    Аварийные повреждения магистральных нефтепроводов внешне характеризуются большим разнообразием (по основному металлу, по заводскому шву, по монтажным швам, в различных точках трубы и тройниковых соединений). Также различны и сроки эксплуатации до возникновения аварий от нескольких месяцев до десятка лет. Однако пояти все нарушения имеют общие признаки. Если исключить случаи явных дефектов и брака, то можно считать, что большая часть аварий происходит без видимых причин и часто при давлениях ниже рабочих. Отсутствуют пластические макродеформации по периметру трубы и у кромок в местах максимального раскрытия трещин в центральной части разрыва, а разрушения часто имеют очаговый характер. Механические свойства металла, в том числе твердость и ударная вязкость, в очаговых зонах (длиной порядка 150—250 мм) остаются прежними, и охрупчивания металла из-за потери свойств (старение, наводороживание) не происходит. Это значит, что если бы разрушение было чисто механическим и вызывалось однократной (статической) нагрузкой, то должны были бы произойти значительные пластические макродеформации, чего на самом деле нет. Такие остаточные деформации с утонением стенки трубы проходят на остальном протяжении разрыва в зоне механического дорыва косым срезом, распространяющегося в обе стороны от очага разрушения. Таким образом, четко различаются две зоны — зона зарождения (очага) разрушения и зона разрыва (рис. 97). [c.222]

    Многие механические свойства металлов объясняются перемещени--ем дислокаций. Так, металл деформируется под действием силы, приложенной соответствующим образом. Когда же действие силы прекращается, металл либо принимает свою первоначальную форму, либо остается в деформированном виде. В первом случае дислокации не смещались или же смещались обратимо это значит, что приложенное усилие не сместило их за то или иное инородное включение в кристаллической решетке и не привело к достаточно большому числу взаимных столкновений между дислокациями. Во втором случае часть дислокаций переместилась необратимо и не возвратилась в свои исходные положения после прекращения действия приложенной силы. Если приложена очень большая сила, то дислокации перемещаются до тех пор, пока многие из них не окажутся перед каким-либо препятствием, таким, как лостороннее включение или граница между соседними кристаллически- ии зернами. На таком участке скопления дислокаций приложенная сила вызывает деформацию связей, а это приводит к разрушению данного материала. [c.509]

    Металлографические исследования показали, что незначительная пластическая деформация (е = 0,12) при ВТМО мало влияет на средний размер и форму зерен аустенита. При увеличении степени деформации до е =1,0 и более число зерен аусте-нита на единицу площади шлифа резко возрастает вследствие появления большого количества мелких рекристаллизованных зерен. Процесс рекристаллизации интенсифицируется с увеличением температуры деформации, Кроме того, при больших степенях деформации, в закаленной стали появляются продукты немартенситного превращения в результате увеличения критической скорости закалки, т.е. интенсификации процесса изотермического превращения аустенита после пластической деформации. Таким образом, при малых степенях деформации при ВТМО мартенсит образуется только из деформированного аустенита, что вызывает повышение прочности. Снижение прочности с увеличением степени пластической деформации стали 45 при ВТМО выше оптимального диапазона, вероятно, можно объяснить различием механических свойств мартенсита, образовавшегося из деформированного аустенита, и мартенсита, полученного из рекристаллизованных зерен аустенита, а также появлением в закаленной стали продуктов немартенситного превращения. [c.57]

    Молекулярный вес. Разные свойства полимера зависят от величины молекулярного веса в различной степени. Так, при механических нагрузках, связанных с малыми деформациями или малыми скоростями деформации, с изменением молекулярного веса (и то лишь у полимеров с низким молекулярным весом) такие свойства полимера, как предел текучести, модуль упругости или твердость, изменяются незначительно. Механические же свойства полимера, связанные с большими деформациями, с изменением молекулярного веса изменяются гораздо сильнее. Например, показатели предела прочности при растяжении, относительное удлинение при разрыве, ударная вязкость при изгибе и растяжении с уменьшением молекулярного веса снижаются. На указанные свойства заметно влияет также полиднсперсность. Это можно объяснить тем, что при больших деформациях главную роль начинают играть атактические аморфные области полимера. Чем больше концов макромолекулярных цепей будет находиться в этих областям— а их концентрация, естественно, возрастает с уменьшением длины макромолекул, — тем быстрее происходит их взаимное ослабление, сдвиг или удаление друг от друга [1]. Вероятно, это обусловливается тем, что они связаны лишь межмолекулярными связями, которые значительно слабее, чем химические связи в цепи или силы сцепления, действующие в кристаллических областях. [c.96]

    ИзучеЦйё деформируемости кристаллических полимеров потребовало дальнейшего развития науки о сопротивлении материалов, так как полимеры в гораздо большей степени, чем металлы, при нормальных температурах обнаруживают нелинейную зависимость между напряжением и деформацией. Эта зависимость для кристаллических полимеров выражается ломаной линией. Для этих материалов характерны также относительно быстрое изменение основных механических свойств с повышением температуры и четкая зависимость деформации от времени воздействия сил. [c.98]

    Механические свойства Т.т.-упругость, пластичность (см. Реология), твердость, хрупкость, прочность зуют их способность сопротивляться деформации и разрушению при воздействии внеш. напряжений. Для большинства Т. т. (за исключением нек-рых полимерных материалов Т1ша каучука) упругая деформация линейно зависит от величины приложенных напряжений Гука закон). В монокристаллах и текстурир. поликристаллах упругая деформация анизотропна. Т. т. с металлич. типом хим. связи обычно более пластичны в сравнении с Т. т., имеющими ионный тип связи, и в большинстве случаев при больших напряжениях испытывают вязкое разрушение (тогда как вторые - обычно хрупкое). Пластичность Т. т. возрастает с повышением т-ры. [c.501]

    Можно сформулировать несколько требований к методам интенсивной пластической деформации, которые следует учитывать при их развитии для получения наноструктур в объемных образцах и заготовках. Это, во-первых, важность получения ультрамелкозернистых структур, имеющих преимущественно большеугловые границы зерен, поскольку именно в этом случае происходит качественное изменение свойств материалов (гл. 4,5). Во-вторых, формирование наноструктур, однородных по всему объему образца, что необходимо для обеспечения стабильности свойств полученных материалов. В-третьих, образцы не должны иметь механических повреждений или разрушений несмотря на их интенсивное деформирование. Эти требования не могут быть реализованы путем использования обычных методов обработки металлов давлением, таких как прокатка, вытяжка или экструзия. Для формирования наноструктур в объемных образцах необходимым является использование специальных механических схем деформирования, позволяющих достичь больших деформаций материалов при относительно низких температурах, а также определение оптимальных режимов обработки материалов. К настоящему времени большинство результатов получено с использованием двух методов ИПД — кручения под высоким давлением и РКУ-прессования. Имеются также работы по получению нано- и субмикрокристаллических структур в ряде металлов и сплавов путем использования всесторонней ковки [16, 17 и др.], РКУ-вытяжки [18], метода песочных часов [19]. [c.9]

    Таким образом, физико-механические свойства всех систем, начиная от высокомолекулярных веществ и их растворов и кончая структурированными дисперсными системами, могут в принципе исследоваться общими методами реологии (реологией наз 1вается общее учение о деформации и течении). Такие исследования имеют преимущество перед простыми измерениями аномальной или структурной вязкости неньютоновских жидкостей (рис. 96), потому что структурная вязкость зависит от условий изм-терения, тогда как реологические константы характеризуют материал независимо от размеров прибора или режима течения. Образование или разрушение различного рода структур или пространственных сеток частиц или мюлекул с различной прочностью связей и жесткостью структурных элементов играет ис1 лючительную роль в дисперсных и полимерных системах и во многих отношениях определяет их техническое использование. Поэтому изучение процессов деформации, их кинетики, частотной зависимости, предельных напряжений и др. имеет большое научное и техническое значение. Установление релаксационного механизма деформации и объективных методов характеристики процессов деформации является существенным успехом коллоидной химии, во многом обусловленном работами советских ученых — Кобеко, Александрова, Каргина, Слонимского, Ребиндера, Соколова, Догадкина и др. [c.251]


Смотреть страницы где упоминается термин Механические свойства при больших деформациях: [c.147]    [c.321]    [c.42]    [c.321]    [c.192]    [c.308]    [c.10]    [c.348]    [c.391]    [c.18]    [c.255]   
Смотреть главы в:

Полимерные смеси и композиты -> Механические свойства при больших деформациях




ПОИСК





Смотрите так же термины и статьи:

Деформации механические

Деформация большие

Деформация свойство свойств



© 2025 chem21.info Реклама на сайте