Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесия в водных растворах кислот и оснований

    В табл. 5-3 указаны константы ионизации ряда кислот в водных растворах там же приведены оценки для сильных кислот, маскируемые растворителем в водном растворе. Диссоциация протонированного растворителя Н3О на гидратированные протоны и HjO представляет собой просто миграцию протонов от одних молекул воды к другим и должна характеризоваться константой равновесия = 1,00. Если в качестве растворителя используется аммиак, все кислоты, сопряженные основания которых слабее, чем NHj, вследствие выравнивающего действия растворителя окажутся полностью ионизованными сильными кислотами. Таким образом, как фтористоводородная, так и уксусная кислоты в жидком аммиаке являются сильными кислотами. [c.217]


    Буферные растворы (или просто буферы) представляют собой такие растворы, которые содержат в определенном отношении слабую (или средней силы) кислоту и сопряженное основание. Эти растворы обладают очень важным свойством в некотором интервале поддерживать постоянным pH раствора при его разбавлении или добавлении небольших количеств кислоты или основания. Каким же образом работает буфер Пусть например, имеется аммиачный буфер, который состоит из эквивалентных количеств соли аммония и аммиака. В водном растворе для отдельных компонентов буфера устанавливаются равновесия  [c.387]

    РАВНОВЕСИЯ В ВОДНЫХ РАСТВОРАХ КИСЛОТ И ОСНОВАНИЙ [c.40]

    Эту реакцию иногда называют гидролизом, в связи с чем возникает представление о разрушении кристаллов ацетата натрия водой. Такое разрушение, действительно, имеет место, когда кристаллы этой соли растворяют в воде, но в данном случае ничего подобного не происходит. В растворе ацетатные ионы обладают основными свойствами. С точки зрения теории Бренстеда, они являются настолько же сильным основанием, как аммиак, а ион аммония может рассматриваться как слабая кислота, подобная НАс. В водном растворе аммиака устанавливается равновесие [c.242]

    Поскольку в водных растворах вода присутствует в большом избытке, любая кислота, сопряженное основание которой слабее, чем HjO (т.е. имеет меньшее сродство к протону, чем HjO), должна быть почти полностью ионизована. По этой причине невозможно установить различие между силой таких кислот, как НС1 и H IO4 (хлорная кислота) в водных растворах. Обе эти кислоты в водном растворе полностью диссоциированы и поэтому являются сильными кислотами. Однако в растворителях, обладающих меньшим сродством к протону, чем вода, можно установить различия между НС1 и H IO4. Если в качестве растворителя используется диэтиловый эфир, хлорная кислота по-прежнему обладает свойствами сильной кислоты, но НС1 ионизуется лишь частично и, следовательно, оказывается слабой кислотой. Диэтиловый эфир не так сильно сольвати-рует протон, как вода (рис. 5-4). (Сольватация-это обобщение понятия гидратации, применяемое к любым, в том числе неводным растворителям.) Положение равновесия в реакции [c.217]

    В данной главе рассмотрено несколько важных типов равновесий, существующих в водных растворах. Прежде всего нас интересовали кислотно-основные равновесия в растворах, содержащих два или несколько растворенных веществ, а также равновесия при растворении. Мы узнали о том, что диссоциация слабой кислоты или слабого основания подавляется в присутствии сильного электролита, который создает в растворе какой-либо ион из числа участвующих в равновесии. Это явление может служить примером влияния общего иона. [c.136]


    Выбор растворителя для изучения кислотно-основных равновесий зависит в первую очередь от нескольких основных свойств растворителя его собственной силы как кислоты или основания, диэлектрической проницаемости и способности сольватировать ионы с помощью водородной связи. Гидроксилсодержащие растворители по способности сольватировать ионы превосходят все другие, причем оказалось, что это свойство является намного более важным, чем легко характеризуемая диэлектрическая проницаемость. Эти растворители почти всегда обладают амфотерными свойствами и каждый из них имеет свой интервал работы, определяемый его кислотностью и его основностью. Вода не подходит в качестве растворителя для титрования слабых оснований, так как она сама по себе является столь сильным основанием, что прибавление кислоты к водному раствору слабого основания только протонирует растворитель, не действуя на исследуемое соединение. Естественно, напрашивается мысль, что менее основные гидроксил содержащие растворители, такие, как карбоновые кислоты, будут более подходящей средой для титрования слабых оснований. [c.214]

    Вода играет на нашей планете роль важнейшего растворителя. Трудно даже представить себе, как могла бы существовать во всей своей сложности живая материя, если бы эту роль вместо воды играла какая-нибудь иная жидкость И дело не только в изобилии воды, но и в ее исключительной способности растворять самые разнообразные вещества. Водные растворы, встречающиеся в природе, будь то биологические жидкости или морская вода, содержат в себе много растворенных веществ. Следовательно, в этих растворах может осуществляться множество равновесий. В гл. 15 мы обсуждали равновесия с участием слабых кислот и оснований. Однако мы ограничили свое рассмотрение растворами, содержащими только одно растворенное вещество. В данной главе будут рассмотрены кислотно-основные равновесия в водных растворах, содержащих два или несколько растворенных вешеств. Кроме того, мы расширим наше изучение равновесий в водных растворах, включив в обсуждение другие типы реакций, в частности реакции, в которых участвуют слабо растворимые соли. [c.110]

    Равновесия в водных растворах кислот и оснований [c.4]

    В данной главе нам предстоит подробнее ознакомиться с кислотами и основаниями. Мы увидим, какая связь существует между свойствами этих веществ и их структурой и особенностями химической связи. Кроме того, в последующих рассуждениях мы будем часто опираться на представление о равновесии, которое было введено в предыдущей главе. Мы убедимся, что свойства кислот и оснований, с которыми нам часто приходится встречаться, очень сильно зависят от того, что растворителем для них служит вода. Чтобы получить лучшее представление о том, насколько интересными свойствами обладает водный раствор кислоты, начнем с рассмотрения довольно распространенного химического реактива-соляной кислоты. [c.68]

    Прибор для непосредственного определения влажности воздуха, азота, кислорода и, возможно, других газов, основанный на измерении теплопроводности, был разработан Черри [16]. Прибор определяет содержание влаги в газах в пределах от 0,16 до 12,3% (об.) (точки росы от —18 °С до +50 С) и более 47,7% (об.) (точки росы 80 °С и выше). Данный способ определения относителен и требует построения градуировочного графика по пробам газов с известным содержанием влаги. Применение для этого сатуратора Черри [16] оказывается более удобным и надежным, чем обычные способы получения газов с известной влажностью путем приведения их в равновесие с водными растворами кислот или солей. [c.201]

    В водных растворах многопротонных оснований (включая и анионы слабых многоосновных кислот) существуют равновесия, аналогичные многопротонным кислотам  [c.40]

    Согласно приведенному в гл, 2 определению Аррениуса, кислота представляет собой вещество, повышающее концентрацию ионов водорода в водном растворе, а основание - вещество, повышающее концентрацию гидроксидных ионов. Более общее определение кислот и оснований было предложено в 1923 г. Бренстедом и Лаури. Определение Бренстеда-Лаури применимо не только к водным, но и к неводным растворам. Согласно Бренстеду-Лаури, кислотой называется любое вещество, способное высвобождать ионы водорода, или протоны, а основанием-любое вещество, способное соединяться с ионами водорода и, следовательно, удалять их из раствора. Теперь, когда мы понимаем, что молекулы воды находятся в равновесии со своими диссоциированными ионами Н и ОН , нетрудно убедиться, что в случае водных растворов оба определения оказываются эквивалентными. Кислоты, как в представлении Аррениуса, так и в представлении Бренстеда, hsj wt h веществами, высвобождающими ионы водорода. Если основание, в представлении Бренстеда, соединяется с ионами водорода, это значит, что в водном растворе оно смещает равновесие реакций (5-5) в сторону диссоциации до тех пор, пока не восстанавливается баланс. В результате образуются дополнительные гидроксидные ионы, и, таким образом, в водных растворах определение основания по Бренстеду совпадает с определением основания по Аррениусу. [c.214]

    Константы диссоциации слабых кислот и оснований используют при вычислении константы и степени гидролиза, pH растворов, в методе нейтрализации, при вычислениях равновесий в водных растворах кислот и оснований, в смесях кислот или оснований, в качественном анализе при осаждении катионов. [c.52]


    Глава I РАВНОВЕСИЯ В ВОДНЫХ РАСТВОРАХ КИСЛОТ И ОСНОВАНИЙ Вопросы для самопроверки [c.6]

    Гальванические элементы являются основой одного из лучших методов изучения равновесий реакций, включающих кислоты, основания и комплексные ионы. Реакции такого типа часто исследуют в водных растворах, причем вода представляет собой исключительный по свойствам растворитель, играющий важную роль в процессах диссоциации кислот и оснований. Термодинамика позволяет понять, почему диссоциация происходит именно в той степени, какая наблюдается на опыте. [c.211]

    На рис. 15.4 указан ряд распространенных кислот и сопряженных им оснований. Отметим, что сильным кислотам отвечают слабые сопряженные основания, а слабым кислотам-сильные сопряженные основания. Ион Н (водн.) является самым сильным донором протона, который может существовать в равновесии с водным расгвором. Поэтому кислоты, указанные на рис. 15.4 выше Н (водн.), полностью отдают протоны воде с образованием Н (водн.). Точно так же, ОН" (водн.) представляет собой самое сильное основание, которое может находиться в равновесии с водным раствором. Всякий более сильный акцептор протона должен полностью реагировать с водой, отнимая у нее протоны и образуя ионы ОН" (водн.). [c.74]

    Таким образом, рассматривая водные растворы слабых кислот, т. е. системы вода + слабая кислота и водные растворы слабых оснований, т. е. системы вода+слабое основание, мы пренебрегаем в первом случае Н+-ионами, а во втором случае ОН -ионами, которые дает вода. Так можно поступать, конечно, только в тех случаях, когда концентрация Н+-ионов за счет диссоциации слабой кислоты или концентрация ОН -ионов за счет диссоциации слабого основания заметно превосходит концентрацию соответствующих ионов, образующихся за счет диссоциации воды. Если это условие выполнено, мы учитываем оба отдельных процесса как сопряженные равновесия и считаем, что когда равновесие в каждой такой системе установится, концентрация общего иона, т. е. в первом случае [Н+], а во втором [ОН ], должна одновременно удовлетворять обоим уравнениям. Но при количественном подсчете этих концентраций мы пренебрегаем теми ионами, которые дает вода, так каких количество относительно мало. [c.58]

    Водные растворы кислоты НА и ее сопряженного основания (аниона А ) характеризуются наличием равновесий ионизации кислоты (протонизации аниона кислоты) и воды  [c.24]

    Большинство веществ, образующих кислые водные растворы, относится к числу слабых кислот. Степень диссоциации кислоты в водной среде можно охарактеризовать константой равновесия реакции диссоциации. Обозначим произвольную кислоту через НХ (или ХН), где X соответствует формуле сопряженного основания, которое остается после отщепления от кислоты протона. Тогда можно записать равновесие диссоциации  [c.81]

    Связь кремний—кислород в цикло- или полисилоксанах легко разрывается в присутствии водных растворов кислот или оснований. Это, несомненно, основной процесс при установлении равновесия в силоксанах. [c.262]

    Важность определения констант равновесия для реакций указанного типа следует из исследований, в которых в качестве растворителей использовались нитробензол [1] и нитрометан [2]. Как и можно было ожидать на основании уравнений реакций, установлено [2], что константа обмена не зависит от природы присутствующего аниона. Недавно сообщено [2—5] об извлечении цезия из водных растворов кислот некоторыми полярными органическими растворителями, особенно нитробензолом. [c.361]

    Слабые кислоты диссоциируют в растворе не полностью. Это нужно учитывать. Для расчета кривой пользуются тремя формулами 1) для расчета [Н" "] в растворе слабой кислоты 2) для расчета [Н" "] в растворе слабой кислоты и сопряженного с ней основания 3) для расчета [Н ] в растворе слабого основания. Эти формулы выводят следующим образом. В водном раотворе слабой кислоты имеют место цва кислотно-основных равновесия  [c.64]

    Рациональность нрименения этого метода можно обсудить с точки зрения равновесия между незаряженным основанием В и сопряженной кислотой ВН в водном растворе сильной кислоты. Реакцию можно записать так  [c.494]

    Вместе с тем известно, что азотистые соединения концентрируются именно в высокомолекулярной части нефти [3—5]. Неполное извлечение o rfbвaний с больщим молекулярным весом водными растворами кислот вероятнее всего может быть объяснено гидрофобностью как самих, оснований, так и образующихся солей, обусловленной значительным преобладанием углеводородной части в молекуле (свыще 20 атомов углерода на 1 атом азота). Недостатки метода извлечения оснований, водными растворами кислот в значительной степени могут быть преодолены при использовании катионитов. В этом случае извлечение оснований можно проводить из любой неводной среды. При этом исчезает барьер растворимости и одновременно исключается возможность гидролиза образующихся солей. Известно, что применение неводных сред позволило разработать весьма чувствительные методы количественного ацидиметрического титрования нефтяных оснований. В неводных средах происходит сдвиг равновесия реакции в сторону образования солк [c.121]

    О—Н, в результате чего он приобретает небольшой отрицательный заряд, а на атомах водорода создаются небольшие положительные заряды. По этой причине вода может взаимодействовать с другими полярными молекулами. Кроме того, молекулы воды в небольшой степени диссоциируют на ионы Н и ОН , а это свойство играет важную роль в кислотно-ос-новных реакциях. В этой главе будут рассмотрены реакции и равновесия в водных растворах главным образом с участием кислот и оснований. [c.208]

    Большинство реакций олефинов, ацетиленов и ароматических углеводородов осуществляется посредством электрофил ьной атаки на их я-электронные системы. В результате этого возник интерес к поведению этих соединений по отношению к кислотам и донорам водородной связи. В водных растворах кислот они либо не протонируются вовсе из-за слабости их основных свойств, либо претерпевают столь бурно протекающую реакцию, что очень трудно получить разумные значения рКа- Поэтому заманчиво сравнить их с другими слабыми основаниями с помощью смещений водородной связи или констант равновесия переноса заряда. Это сравнение, однако, может привести к ошибкам, если другие сравниваемые основания являются п-основаниями. Равновесия протонироваиия я-оснований, если они могут быть измерены, могут поставить нас перед другой проблемой — проблемой правильного выбора функции кислотности. [c.223]

    В водных растворах ионы металлов являются льюисовскими кислотами, а такие комплексные ионы, как Fe(N0)2 Сг(Н20)Г и А1К ", можно рассматривать как комплексы кислота — основание. Благодаря большой валентной оболочке атомов неметаллов, находящихся ниже второго ряда периодической таблицы элементов (3, Р, С1, Вг, I и т. д.), они могут проявлять свойства как кислот, так и оснований Льюиса. Ион 1 в реакции с ионами металлов (кислота Льюиса) может действовать как основание, давая весьма стабильные комплексы, такие, как ]ig(I) . С другой стороны, 1а может действовать как кислота в реакциях с донорами электронов, приводя к образованию комплексов с различной стабильностью. Равновесие к реакции I" - - 1а 1 в 0,1 М водном растворе сильно сдвинуто вправо (А рави = 140 л1молъ), АН° = — 4,0 ккал. [c.499]

    Как уже упоминалось, кислый или основный характер протонсодержащей частицы, а также проявляемая ею сила кислоты или основания зависят от природы растворителя — партнера частицы по протолитическому равновесию. В разбавленных водных растворах сила кислоты определяется ее константой диссоциации, и в этом отнощении нет различия между теорией Бренстеда и водной теорией кислот и оснований. [c.45]

    Слабые кислоты и основания диссоциированы в водном растворе лишь частично. В водном растворе слабой кислоты НА существует равновесие  [c.41]

    Что произойдет с ионным равновесием воды н степенью ее диссоциации при добавлении сильной кислоты илн сильного основания Как это отразится на концентрациях и ОН -ионов Может лн в водном растворе концентрация ионов Н нли ОН" стать равной нулю Почему  [c.77]

    ЦИИ и было известно (на что многие не обращали внимания), что она представляет собой реакцию общего кислотного катализа. В 1961 г. Баннет [31] решил обе эти проблемы. Он показал, что шкалы кислотности, применяемые к равновесию в водных растворах кислот, зависят в большой мере от изменения активности растворителя — воды и, следовательно, от количества связанной воды, включая сольватационную, которое высвобождается или связывается с растворенным веществом в результате переноса протона. Высвобождение связанной воды более благоприятствует течению реакций при высокой кислотности, когда раствор менее богат свободными молекулами растворителя — воды. Шкала ко была построена для выражения равновесия переноса протона от сильно гидрофильных молекул воды к умеренно гидрофильным органическим азотистым основаниям. В этих процессах некоторое количество связанной воды высвобождается, и это служит главной причиной того, почему шкала Ао с ростом кислотности растет более круто, чем шкала [Н+]. Шкала прекрасно отражает равновесный перенос протона к умеренно гидрофильным органическим азотистым и органическим кислородным основаниям. Однако, когда высвобождается слишком большое количество связанной воды, что бывает при переносе протона от воды к гидрофобным углеродным основаниям, тогда функция к становится неприменимой. В этом случае для того, чтобы описать равновесие переноса протона к углероду, нужна функция, более круто растущая, чем функция к . Баннет пришел к заключению, с которым следует согласиться, что функция Гаммета ко иногда все же дает приближенное описание псевдоравповесного частичного переноса протона и связанного с этим переносом частичного высвобождения воды, протекающих при образовании переходного состояния переноса протона к углероду. [c.790]

    Характерным свойством ионов металлов является их способность вести себя как льюисовы кислоты, или акцепторы электронных пар, по отношению к молекулам воды, которые выступают в роли льюисовых оснований, или доноров электронных пар (см. разд. 15.10). С ионами металлов кроме воды могут взаимодействовать и другие льюисовы основания, особенно ионы переходных металлов. Такие взаимодействия весьма существенным образом сказываются на растворимости солей металлов. Например, соль Ag l, для которой ПР = l,82 10 °, растворяется в водном растворе аммиака благодаря взаимодействию между ионом Ag и льюисовым основанием NHj. Этот процесс можно рассматривать как совокупность двух последовательных реакций равновесия растворения Ag l и взаимодействия льюисовой кислоты Ag"  [c.130]

    Весьма интересно влияние давления на ионное равновесие водных растворов электролитов. Исследования, выполненные при 25°С и при давлениях до 300 МПа, показали, что константы диссоциации целого ряда органических кислот в водных растворах возрастают при увеличении давления от атмосферного до 300 МПа в среднем в 3,5 раза, а для некоторых оснований (например, КН40Н) в 12...14 раз. Отсюда видно, что диссоциация исследованных соединений сопровождается уменьшением объема. Причиной этого является гидратация (в общем случае сольватация) образующихся ионов в гид-ратной (сольватной) оболочке, окружающей ион, молекулы растворителя расположены более плотно (электрический заряд на ионе), чем в объеме растворителя. Исследования показали, что уменьшение объема при диссоциации большинства кислот составляет 10...12 см /моль При более высоких давлениях константа диссоциации возрастает весьма сильно константа диссоциации ЫН40Н прн 45 °С увеличивается при росте давления от атмосферного до 1200 МПа более чем в 500 раз. Отсюда можно заключить, как возрастает химическая активность данного соединения в условиях высокого давления. В качестве еще одного примера возрастания степени диссоциации слабых электролитов с повышением давления можно привести данные, согласно которым константа диссоциации пиперидина в метиловом спирте при 45 С возрастает в 1000 раз при увеличении давления с атмосферного до 1200 МПа. [c.116]

    В частности, установлено, что константы равновесия про-тоыирования указанных оснований в газовой фазе и в водных растворах кислот практически совпадают.  [c.92]

    КИСЛОТ, чем значение рЛ, с которым сила кислоты идентична в сильно разбавленных, но не в концентрированных растворах, где она имеет другие значения [339, 340, 342, (i25J. Их метод основывается на ионизационных равновесиях особого класса индикаторов, ведущих себя по Бренстеду как незаряженные основания. При добавлении индикатора В к водному раствору кислоты НР13К0Й концентрации равновесие может быть выражено следующим образом  [c.47]

    Тогда сила кислоты чистой воды равна рКа = 15,74 в разбавленном водном растворе это равновесие влечет за собой следующую зависимость между силой кислоты (АНилиВН" ) и силой сопряженного кислоте основания (A или В)  [c.37]

    Из уравнения (3.75) следует, что тепловому эффекту в 5 кДж/моль соответствует изменение р/С на 0,03, при изменении температуры на 10°. Тепловой эффект диссоциации многих слабых кислот и оснований в водных растворах находится в пределах от —12,0 до 12,0 кДж/моль, что соответствует изменению рЛ примерно на 0,071 единицы при изменении температуры на 10°. Это сравнительно небольшое число, поэтому во многих химикоаналитических расчетах кислотно-основных равновесий влиянием температуры пренебрегают. Наибольшее влияние температура оказывает на процессы типа (3.44), связанные с диссоциацией воды на ионы. Процесс НОН = Н+ + 0Н существенно эндо-термичен (АЯ = 56,1 кДж/моль), поэтому с увеличением температуры константы равновесия таких процессов заметно увеличиваются. [c.61]


Смотреть страницы где упоминается термин Равновесия в водных растворах кислот и оснований: [c.162]    [c.110]    [c.490]    [c.341]   
Смотреть главы в:

Аналитическая химия. Ч.1 -> Равновесия в водных растворах кислот и оснований

Задачник по аналитической химии -> Равновесия в водных растворах кислот и оснований

Аналитическая химия Часть 1 -> Равновесия в водных растворах кислот и оснований

Основы качественного химического анализа  -> Равновесия в водных растворах кислот и оснований


Аналитическая химия Часть 1 (1989) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

ВОДНЫЕ РАСТВОРЫ КИСЛОТ И ОСНОВАНИЙ

ИОННЫЕ РАВНОВЕСИЯ В РАСТВОРЕ Равновесия в водных растворах кислот и оснований

Ионные равновесия в растворе глава 1. Равновесия в водных растворах кислот и оснований Вопросы и упражнения

Кислота равновесия

Кислоты pH в водных растворах

Кислоты равновесие в растворах

Основания pH в водных растворах

Основания и кислоты

Равновесие в растворах

Равновесия кислот и оснований



© 2025 chem21.info Реклама на сайте