Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Набухание дифференциальная

    Важными термодинамическими характеристиками набухания являются дифференциальная работа, интегральная и дифференциальная теплоты набухания. Дифференциальная работа набухания определяется по уравнению [c.315]

    Если полимеры имеют одинаково построенную основную цепь и различаются лишь характером заместителей, можно считать, что основную роль в определении величины проницаемости будут играть межмолекулярные силы. В первом приближении величина межмолекулярных сил может быть оценена из плотности энергии когезии полимеров , рассчитанной на основании данных о набухании, дифференциальных теплотах растворения и др. Проницаемость должна находиться в обратной зависимости от плотности энергии когезии, так как последняя увеличивается с ростом полярности полимеров и плотности упаковки макромолекул Значения плотности энергии когезии, взятые из работы Шварца сопоставлены в табл. 8 с данными о водородопроницаемости некоторых полимеров. [c.82]


    Она уменьшается с ростом степени набухания. Часто процесс набухания сопровождается выделением теплоты. Интегральная и дифференциальная теплоты набухания определяются аналогично соответствующим теплотам в сорбционных процессах. Различие состоит в том, что вместо степени заполнения поверхности при набухании используют степень набухания. Абсолютное значение интегральной теплоты набухания увеличивается с ростом степени набухания. Дифференциальную теплоту набухания получают дифференцированием интегральной теплоты по степени набухания. На рис. VI.И представлены зависимости интегральной и дифференциальной теплот набухания от степени набухания. Из них следует, что дифференциальная теплота (ее абсолютное значение), как и дифференциальная работа набухания, уменьшается с ростом степени набухания и становится равной нулю при предельном набухании. Следует отметить, что если дифференциальная работа набухания снижается относительно плавно вплоть до предельного набухания, то дифференциальная теплота резко уменьшается уже при малых значениях степени набухания. Характер изменения интегральной теплоты набухания аналогичен изменению теплоты адсорбции. Было установлено, что зависимость интегральной теплоты набухания от степени набухания следует эмпирическому уравнению [c.363]

    Различают интегральную теплоту набухания, т. е. общее количество тепла, выделившееся (или поглощенное) при набухании 1 г полимера, и дифференциальную теплоту набухания, представляющую собой тепловой эффект при поглощении набухающим полимером 1 г растворителя. Естественно, по мере развития процесса набухания дифференциальная теплота набухания постепенно уменьшается, поскольку наибольший тепловой эффект наблюдается на первых этапах процесса, когда происходит наиболее интенсивное изменение энергии межмолекулярного взаимодействия. [c.90]

    Аналитическая форма математической модели процесса набухания сополимеров. Имея диаграмму связи процесса набухания (рис. 4.5), возможно на основании алгоритма формирования системных уравнений, представленного в 3.2, записать систему дифференциальных уравнений математической модели процесса набухания [c.314]

    Кинетика набухания характеризуется зависимостью степени набухания от времени при данной активности растворителя (давлении пара). Типичные кинетические кривые набухания представлены на рис. VI. 10. При неограниченном набухании в определенный момент времени растворение приводит к уменьшению массы образца. Кинетические кривые для ограниченного набухания часто представляют аналитически в виде следующего дифференциального уравнения  [c.314]


    Очевидно, энтропийной составляющей, главным образом, обусловлен и переход набухания в растворение. Однако дифференциальная теплота растворения, хотя оиа будет небольшой, нулевое значение примет только при бесконечном разбавлении раствора. Прн этом снижается до нуля и дифференциальная работа растворения. Для характеристики растворов полимеров исиользуют те же термодинамические параметры, что и для растворов низкомолекулярных веществ. [c.317]

    Различают интегральную и дифференциальную теплоту набухания. [c.332]

    Дифференциальной теплотой набухания называется то количество теплоты, которое выделяется при поглощении 1 кг жидкости сухим или набухшим полимером. [c.332]

    Экспериментально интегральная теплота набухания определяется в специальных калориметрах, а дифференциальная теплота [c.332]

    Полимеров в полярных же растворителях. Это й понятно, так как выделение тепла при набухании связано с взаимодействием молекул полимера и растворителя. Различают интегральную теплоту набухания инт, т. е. общее количество тепла, выделившееся при набухании 1 г сухого полимера, и дифференциальную теплоту набухания диф, представляющую собой количество тепла, выделившегося при поглощении 1 г жидкости сухим или уже набухшим высокомолекулярным веществом. [c.450]

    В качестве примера в табл. XIV, 3 приведены интегральные и дифференциальные теплоты набухания некоторых высокомолекулярных веществ (по данным Каца и Марка). [c.450]

Таблица Х1У.З. Интегральные и дифференциальные теплоты набухания (в кал/г) некоторых высокомолекулярных веществ Таблица Х1У.З. Интегральные и <a href="/info/776454">дифференциальные теплоты набухания</a> (в кал/г) <a href="/info/1487436">некоторых высокомолекулярных</a> веществ
    Дифференциальная теплота набухания тем меньше, чем больше степень набухания высокомолекулярного вещества В качестве примера приведем найденные интерполяцией дифференциальные теплоты набухания для желатина  [c.450]

    Как можно видеть, дифференциальная теплота набухания быстро падает с увеличением оводненности высокомолекулярного вещества. При значительном оводнении тепловой эффект набухания может равняться нулю или даже принимать отрицательное значение. [c.451]

    Количество тепла, выделяющееся при поглощении полимером 1 г жидкости, в различных состояниях набухающего студня, называется дифференциальной теплотой набухания. Наибольшее значение дифференциальная теплота набухания имеет в начальный момент процесса набухания. [c.297]

    Дифференциальная теплота д = dQ/dm в процессе набухания уменьшается, поскольку вначале идет сольватация по наиболее активным участкам, а затем молярная энергия взаимодействия молекул растворителя с полимером постепенно уменьшается. [c.313]

    Построить кривую кинетики набухания в координатах Q = /(т) и дифференциальную кривую кинетики набухания в координатах = /(т), используя экспериментальные данные набухания вулканизированного каучука в четыреххлористом углероде  [c.79]

    Рпс. 77. Изменение интегральной (/) и дифференциальной (2) теплоты набухания при увеличении количества поглощенного растворителя [c.204]

    Экспериментальные данные по сорбции и набуханию полимерных пленок можно описать 76] дифференциальным уравнением с переменным коэффициентом диффузии вида  [c.216]

    Она уменьшается с ростом степени набухания. Часто процесс набухания сопровождается, выделением теплоты. Определение интегральной и дифференциальной теплот набухания аналогично их определению в сорбционных процессах. Разница состоит в том, что вместо степени заполнения иоверхности ири набухании используют степень набухання. Р1нтегральная теилога набухания увеличивается с ростом степени набухання. Дифференциальную теплоту набухания иолучают дифференцированием интегральной теплоты по степени набухания. На рис. VI. 11 представлены зависимости интегральной и дифференциальной теплот набухания от степени набухания. Из них следует, что дифференциальная теплота, как и дифференциальная работа набухания, уменьшается с ростом степени набухания и становится равной нулю прн предельно ] набухании. Следует отметить, что если дифференциальная работа набухания снижается относительно плавно вплоть до предельного [c.315]

    Применение топологического принципа описания ФХС позволило сформировать обобщенную математическую модель процесса в виде диаграммы связи, отражающей все основные явления, характерные для стадии отмывки. Установлено, что при разбавлении серной кислоты в диапазоне концентраций 98—20% выделяется основное количество тепла, при этом ионит набухает незначительно. Это позволило для исследования тепловых г)ффе1стов, сопровождающих отмывку и оказывающих решающее влияние на прочностные свойства гранул ионита, сформировать упрощенную диаграмму связи без учета эффекта набухания. Из диаграммы связи с помощью стандартных процедур получена аналитическая форма математической модели процесса отмывки в виде дифференциально-разностных уравнений состояния. [c.394]


Рис. VI. 11. Зависимость интегральной <7, и дифференциальной теплот набухання от степенн набухания. Рис. VI. 11. <a href="/info/360414">Зависимость интегральной</a> <7, и <a href="/info/776454">дифференциальной теплот набухання</a> от степенн набухания.
    В качестве примеров приведем для некоторых веществ максимальные дифференциальные теплоты набухания в воде (о кДж/кг) желаиша 960, казеин —1150, целлюлоза — 1670, мука — 1840, глина — 1100, гумусовая почва —2600. [c.316]

    Набухание полимеров сопровождается выделением тепла. Тепловой аффект, сопровоадающий процесс набухания полшера в жидкости, называется теплотой набухания. Важными характеристиками набухания являются и н т i г р а-лъная и дифференциальная теплоты набухания. [c.67]

    Разновидностью технологии дифференциального набухания является помещение образцов вулканизатов в смесь бутил- и метилак-рилата, содержащую небольшое количество инициатора полимеризации (пероксида бензоила). Таким образом достигается повышенная степень набухания и облегчается подготовка образцов (при комнатной температуре) для ТЭМ. Метакрилат полимеризуется лишь частично, легко разрушается и удаляется из срезов при их бомбардировке электронами. Травление электронным пучком снижает толщину слоя более набухшего полимера (например, НК в смесях с БСК и СКД) и приводит к более четкому фазовому разделению, чем набухание среза, полученного криоскопически. Таким способом было определено распределение технического углерода в ряде полимерных смесей и установлено, что наиболее предпочтительно его расположение в БСК, которое близко для СКД, хлорированного каучука и БНК. Значительно меньше ТУ содержится в НК, затем в СКЭПТ и наименьшее количе- [c.579]

    Для измерения теплот набухания, теплот равновесия различных форм и теплот частичного обмена как функции от состава ионообменника использовался простой калориметр, работающий в неизотермиче-скнх условиях. Теплоты полного обмена получали суммированием теплот частичного обмена от двух чисто катионных форм до смешанной формы, за исключением Rb+- и Сб -форм, где была необходима экстраполяция. С помощью соответствующих термодинамических расчетов можно получить в зависимости от состава ионообменника стандартные А// и дифференциальные д АИ1)/дд теплоты неполного обмена. Стандартные величины свободной энергии АС были получены либо из графиков, построенных по методу Киелланда, либо путем обработки данных, полученных по методу Гайнеса и Томаса (табл. 17). [c.84]

    Трудность измерения теплового эффекта при гелеобразовании желатины связана с небольшой его величиной, для определения которой были необходимы чувствительные приборы и методы. В работах ряда авторов [107—111] для определенпя теплового эффекта гелеобразования применялись дифференциальные термопары с визуальным отсчетом и с применением фотозаписи при помощи саморегистрирующего пирометра Курнакова. Эти методы и приборы оказались недостаточно точными и чувствительными для измерения тепловых эффектов при гелеобразовании, и поэтому дальнейшие термохимические исследования гелей желатины велись по измерению теплот набухания и растворения, а также по измерению теплоемкости гелей с использованием чувствительных калориметров. Эти исследования и выявили, что теплоты растворения и набухания гелей желатины зависят от температуры, тогда как для термолизованной желатины эта зависимость не наблюдалась. Теплота плавления геля, полученная из температурной зависимости величины предельного набухания, равна 3,75 кал г белка [61], однако калориметрические исследования теплот растворения студня желатины в 8 М растя,ipe мочевины дали теплоту плавления 9 кал г [110]. [c.72]

    Выбор режима отверждения или вулканизации обычно проводят путем исследования кинетики изменения какого-либо свойства отверждаемой системы электрического сопротивления и тангенса угла диэлектрических потерь, прочности, ползучести, модуля упругости при различных видах напряженного состояния, вязкости, твердости, теплостойкости, теплопроводности, набухания, динамических механических характеристик, показателя преломления и целого ряда других параметров [140, 178—183]. Широкое распространение нашли также методы ДТА и ТГА, химического и термомеханического анализа, диэлектрической и механической релаксации, термометрического анализа и дифференциальной сканирующей калориметрии [140, 178, 184—187]. Все эти методы условно можно разбить на две группы методы, позволяющие контролировать скорость и глубину процесса отверждения по изменению концентрации реакционноспособных функциональных групп, и методы, позволяющие контролировать изменение какого-либо свойства системы и установить его предельное значение. Методы второй группы имеют тот общий недостаток, что то или иное свойство отверждающейся системы ярко проявляется лишь на определенных стадиях процесса так, вязкость отверждающейся системы можно измерять лишь до точки гелеобразования, тогда как большинство физико-механических свойств начинает отчетливо проявляться лишь после точки гелеобразования. С другой стороны, эти свойства сильно зависят от температуры измерения, и если осуществлять непрерывный контроль какого-либо свойства в ходе процесса, когда необходимо для достижения полноты реакции менять и температуру в ходе реакции или реакция развивается существенно неизотермично, то интерпретация результатов измерений кинетики изменения свойства в таком процессе становится уже весьма сложной. [c.37]

    Исследования последних лет [14—16] с помощью дифференциального термического и рентгеновского анализов согласуются с результатами [17] по микроскопическим исследованиям гидратации гипса и показывают. Что при этом имеют место топохимические реакции. Для образцов семидневного срока ни гели, ни другие некристаллизованные субстанции не были обнаружены. П. П. Е>удников [И отмечает, что многие исследователи рассматривают схватывание гипса как коллоидный процесс. По их мнению, гипс, замешанный с водой, из-за набухания его зерен под влиянием среды образует студень — коллоидный гель, из которого затем вырастают иглообразные кристаллы. По мнению Байкова, всякое твердеющее вещество проходит стадию коллоидного состояния, хотя в конце процесса отвердевший раствор состоит только из кристаллических образований, обладающих заметной растворимостью. [c.174]


Смотреть страницы где упоминается термин Набухание дифференциальная: [c.316]    [c.67]    [c.448]    [c.364]    [c.448]    [c.450]    [c.186]    [c.204]    [c.461]    [c.204]   
Руководство к практическим занятиям по коллоидной химии Издание 3 (1952) -- [ c.229 ]

Руководство к практическим занятиям по коллоидной химии Издание 4 (1961) -- [ c.271 ]




ПОИСК





Смотрите так же термины и статьи:

Набухание



© 2025 chem21.info Реклама на сайте