Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядро атома, строение

    Квантовомеханическое объяснение строения атома водорода. Атом водорода устроен наиболее просто — он имеет только один электрон, движущийся в поле ядра. В этом случае входящая в уравнение Шредингера функция потенциальной энергии и принимает вид (см. стр. 19) [c.37]

    Внутренняя структура молекул воды. Молекулы воды состоят из водорода и кислорода. С современных позиций строения атома электронные облака молекул воды расположены в форме неправильного тетраэдра. Атом кислорода оказывается при этом в центре, а два атома водорода — в противоположных углах одной из граней куба. Угол между ними составляет 104°ЗГ. Два из восьми электронов атома кислорода расположены около ядра, два других связаны с атомами водорода, а две неподеленные пары [c.8]


    Ядерная модель атома. Одна из первых моделей строения атома была предложена английским физиком Э. Резерфордом. В опытах по рассеянию а-частиц было показано, что почти вся масса атома сосредоточена в очень малом объеме — положительно заряженном ядре. Согласно модели Резерфорда, вокруг ядра на относительно большом расстоянии непрерывно движутся электроны, причем их количество таково, что в целом атом электрически нейтрален. Позднее наличие в атоме тяжелого ядра, окруженного электронами, было подтверждено другими учеными. [c.10]

    Естественно, что фундаментальный закон химии, открытый Д. И. Менделеевым, — периодический закон—должен найти себе объяснение в закономерности строения атоМов, вскрываемой квантовой механикой. Периодичность в изменении химических свойств элементов при возрастании заряда ядра определяется периодическим повторением у определенных атомов строения внешних электронных оболочек. Легко заметить, что число электронов в последовательности от 5 до ближайшей конфигурации (первый период) или (остальные периоды) равно 2, 8, 8, 18, 32 (табл. 3), т. е. совпадает с числом элементов в периодах системы Д. И. Менделеева и объясняет, почему именно столько элементов содержится в данном периоде. Период начинается элементом, у которого впервые в системе возникает новый квантовый слой, содержащий один л-электрон (щелочной металл), и оканчивается элементом, у которого впервые в этом квантовом слое достраивается шестью электронами -подоболочка (благородные газы). Очевидно, что номер периода )авен главному квантовому числу электронов внешнего слоя. Например, атом натрия, открывающий третий период, и атом аргона, заканчивающий его, имеют конфигурации К 13л и К соответст- [c.60]

    Атомом называют мельчайшую частицу элемента, сохраняющую все его свойства, С точки зрения теории строения атомом является устойчивая динамическая система из положительно заряженного ядра и определенного числа электронов. Если число электронов равно числу единиц заряда ядра, атом яв.тяется электронейтральной системой, к которой и относится химическое определение атома, в противном же случае мы имеем дело с положительным или отрицательным ионом. В теории строения такие системы описывают теми же методами, что и электронейтральные атомы, поэтому второе определение обобщает понятие атома и на ионы. Говоря об устойчивости атома, понимают, что энергия атома ниже, чем энергия невзаимодействующих ядра и электронов, т. е. при образовании атома из ядра и электронов энергия выделяется. Обычно за начало отсчета энергии, т, е. за нуль, принимается энергия невзаимодействующих ядра и электронов. Тогда энергия устойчивой системы — атоМа — оказывается отрицательной. [c.16]


    При развитии модели строения атома водорода Бору необходимо было преодолеть прежде всего внутренние противоречия, которые имели место в планетарной модели атома. По представлениям классической электродинамики вращающийся электрон должен непрерывно излучать энергию в виде электромагнитных волн. Отсюда следует, что электрон должен упасть на ядро, а также при непрерывном излучении спектр водорода должен быть сплошным, т. е. содержать линии, отвечающие всевозможным длинам волн. Однако, как известно, атом водорода устойчив и спектр его имеет дискретную структуру (рис. 3.5). Отсюда можно было заключить, что механические и электрические свойства макроскопических тел не могут служить моделью для такой микросистемы, как атом водорода (а также вообще микросистем). Бор вынужден был искать новую модель, которая не противоречила бы известным фактам. [c.53]

    Однако к моменту открытия периодического закона только лишь стали утверждаться представления о молекулах и атомах. Причем атом считался не только наименьшей, но и элементарной (т. е. неделимой) частицей. Прямым доказательством сложности строения атома было открытие самопроизвольного распада атомов некоторых элементов, названное радиоактивностью. В 1896 г. французский физик А. Беккерель обнаружил, что материалы, содержащие уран, засвечивают в темноте фотопластинку, ионизируют газы, вызывают свечение флюоресцирующих веществ. В дальнейшем выяснилось, что этой способностью обладает не только уран. Титанические усилия, связанные с переработкой огромных масс урановой смоляной руды, позволили П. Кюри и М. Склодовской открыть два новых радиоактивных элемента полоний и радий. Последовавшее за этим установление природы а-, (5- н у-лучей, образующихся при радиоактивном распаде (Э. Резерфорд, 1899 —1903 гг.), обнаружение ядер атомов диаметром 10 нм, занимающих незначительную долю объема атома (диаметр 10 нм) (Э. Резерфорд, 1909— 1911 гг.), определение заряда электрона (Р. М и л л и к е н, 1909— 1914 гг.) и доказательство дискретности его энергии в атоме (Дж. Ф р а н к, Г. Г е р ц, 1912 г.), установление заряда ядра, равного номеру элемента (Г. Мозли, 1913 г.), и, наконец, открытие протона (Э. Резерфорд, 1920 г.) и нейтрона (Дж. Чедвик, 1932 г.) позво или предложить следующую модель строения атома  [c.23]

    Сравним, например, NH4 и СН4.. Эти две молекулярные частицы обладают одинаковым электронным строением, поскольку они являются изоэлектронными. В каждой из них имеется центральный атом, окруженный октетом валентных электронов, которые обобществлены в связях с четырьмя атомами водорода. Различие между ними заключается в заряде ядра центрального атома. Поскольку заряд ядра у N на единицу больше, чем у С, обобществляемые атомами водорода электронные пары сильнее притягиваются к ядру атома N в КНд, чем к ядру атома С в СН4. Поэтому связи N—Н поляризованы сильнее, чем связи С—Н. Соответственно ион аммония в воде обладает кислотными свойствами, чего нельзя сказать о метане  [c.96]

    Современная теория строения атома, основанная на квантовой (волновой) механике, представляет поведение электрона в атоме очень сложным. Электрон — частица определенной массы, движущаяся с большой скоростью. Вместе с тем электрон обладает и свойствами волны он движется по всему атомному объему и может находиться в любой части пространства вокруг ядра атом  [c.47]

    Заряд атомного ядра по величине совпадает с порядковым номером элемента в периодической системе число электронов равно заряду ядра. Атом в целом нейтрален, т. е. сумма отрицательных зарядов компенсирована положительным зарядом ядра. Размеры атомного ядра (диаметр 10 — 10 м) весьма малы по сравнению с размерами атома (диаметр 10 м), но почти вся его масса сосредоточена в ядре ( 99,97 %). А так как масса является мерой энергии, то в ядре сосредоточена почти вся энергия атома. Плотность ядерного вещества огромна ( 10 кг/м ). Заряд ядра определяет не только общее число электронов, но и электронное строение атомов, а следовательно, их физико-химические свойства. [c.90]

    Рассмотрим теперь математическое представление реактантов, учитывающее явление геометрической изомерии. Отметим сразу, что современные формулы строения химических веществ непригодны для проведения расчетов на ЭВМ химических реакций, так как их нельзя непосредственно ввести в оперативную намять ЭВМ или записать на внешние носители информации. Далее, для этой цели нецелесообразно использовать и векторное представление молекул, которое строилось на основе их брутто-формул. Следовательно, требуются дальнейшие обобщения, связанные с представлением молекул в виде матриц определенной размерности, равной числу содержащихся в молекуле атомов. При формировании элементов этой матрицы, называемой В-матрицей, учитывается, что каждый атом состоит из атомного остова, составленного из ядра атома и внутренних электронов и имеющего некоторый формальный заряд, и электронов валентной оболочки. Последние менее сильно связаны с атомным остовом и участвуют в образовании химических связей. [c.174]

    В значительной степени противоречия ядерной модели Резерфорда были устранены датским физиком Н. Бором, который в 1913 г. разработал теорию атома водорода. При этом он допустил что раз атом устойчив, значит есть в атомном пространстве орбиты, двигаясь по которым, электрон не теряет энергии, поэтому и не падает на ядро. Теория строения атома водорода была основана на законе классической механики о сохранении энергии и на квантовой теории излучения. [c.34]


    Строение этого соединения было доказано кипячением его с соляной кислотой. При этой реакции стоящий в ядре атом ртути замещается на водород и получается ж-нитробензойная кислота (П). [c.181]

    Но, согласно новым представлениям о строении атома, атом имеет ядро, состоящее из протонов (и нейтронов). Протоны и нейтроны примерно равны по массе, и, следовательно, массы всех атомов должны быть кратными массе атома водорода (состоящего из одного протона). Гипотеза Праута возродилась, зато вновь возникли сомнения относительно того, какими должны быть атомные массы. [c.167]

    Строение атома водорода. Атом водорода имеет наиболее простое строение в нем есть только один электрон, движущийся в поле ядра. Для такой системы функция потенциальной энергии, [c.20]

    Плотность ароматических углеводородов, имеющих орто- и смежное положение заместителей, выше, чем у других изомеров с теми же алкильными группами. Введение заместителей в ароматическое ядро снижает температуру плавления и повышав ет температуру кипения (инкремент температуры кипения составляет 20°С на один атом углерода). Наличие нескольких заместителей повышает температуру кипения больше, чем изомерный углерод с одним заместителем (ксилолы и этилбензол, триметилбензолы и н-пропил- и изо-пропилбензолы). Для симметричных изомеров характерна более высокая температура плавления (л-ксилол плавится при 13,3°С, м- и о-ксилолы соответственно при —47,9°С и —25,2°С). Подобная же закономерность наблюдается и для трехзамещенных углеводородов. При различии в строении алкильного заместителя наблюдаются закономерности, характерные для парафиновых углеводородов — изоструктура алкильного заместителя приводит к снижению температуры кипения. Основные показатели некоторых ароматических углеводородов приведены в табл. 1.1. [c.9]

    Используемое ныне в научной литературе выражение "превращение химических элементов" некорректно. Оно подменяет конкретный объект превращения (атом), неопределенным понятием (химический эле.мент). Недостатком формулировки закона радиоактивных смещений (правильнее превращений ) является то, что она не выделяет подвиды атомов как объект превращения. Она, по-прежнему, "вяжет" их к смещениям в Периодической системе. Возникает принципиальное несоответствие между законом и наглядной его иллюстрацией. Периодическая система химических элементов имеет в основе своей структуры устройство электронной оболочки атомов. Строение ядра имеет здесь лишь опосредованное значение через равенство Ерц. = 1 . Закон же радиоактивных превращений касается исключительно ядерных преобразований и индифферентен (в рамках данных рассмотрений ) к структуре электронной оболочки. И в этом аспекте рассмотрения система атомов идентична системе ядер. Мы как бы на время, игнорируем присутствие электронной оболочки. [c.102]

    Как мы знаем, все твердые вещества как кристаллического, так и непериодического строения имеют остов, вид и мерность которого определяют строение вещества. Атом представляет собой систему, состоящую из валентных электронов и атомного остова. Атомное ядро отклоняется от положения равновесия весьма незначительно и практически локализовано внутри атома, тогда как валентные электроны совершают колебания с амплитудой, равной междуатомным расстояниям. Поэтому по местонахождению ядер можно определить, какое положение занимают данные атомы в молекулах и кристаллах. Зная, что степень перекрывания волновых функций достигает максимума при сближении атомов на определенное расстояние (речь идет о средних межатомных расстояниях в твердом теле, которые могут быть найдены, например, рентгеноструктурным методом) и резко уменьшается на несколько большем расстоянии, можно точно установить, какие атомы связаны между собой химическими связями. Химические связи между атомами в формулах химических соединений принято обозначать черточками. Например, хотя в молекуле дело- [c.60]

    Не составляет труда записать волновое уравнение Шрёдингера для атома лития, состоящего из ядра и трех электронов, или атома урана, состоящего из ядра и 92 электронов. Однако, к сожалению, эти дифференциальные уравнения невозможно решить. Нет ничего утешительного в том, что строение атома урана в принципе может быть найдено путем расчетов, если математические (хотя отнюдь не физические) трудности препятствуют получению этого решения. Правда, физики и физикохимики разработали для решения уравнения Шрёдингера множество приближенных методов, основанных на догадках и последовательных приближениях. Проведение последовательных приближений существенно облегчается использованием электронно-вычислительных машин. Однако главное достоинство применения теории Шрёдингера к атому водорода заключается в том, что она позволяет получить ясную качественную картину электронного строения многоэлектронных атомов без проведения дополнительных расчетов. Теория Бора оказалась слишком упрошенной и не смогла дать таких результатов, даже после ее усовершенствования Зом-мерфельдом. [c.374]

    Планетарная модель атома достаточно наглядно представляла строение атома. Пользуясь этой моделью, можно было объяснить некоторые свойства химических элементов, например способность одних атомов образовывать только положительно заряженные ионы, а других — только отрицательные. Однако планетарная модель атома находилась в противоречии с законами классической электродинамики, согласно которым вращающийся вокруг ядра электрон должен излучать энергию в виде электромагнитных волн. В соответствии с законом сохранения энергии излучение энергии электроном должно неизбежно сопровождаться уменьшением его скорости и электрон неминуемо должен упасть на ядро, в результате чего атом в виде планетарной системы должен перестать существовать. Иначе говоря, атомы должны излучать энергию в виде непрерывного, сплошного спектра и погибать как таковые. [c.45]

    В дальнейшем понятие химического элемента получило уточнение в соответствии с современным учением о строении атомов. Как известно, атом является сложной системой, состоящей из положительно заряженного ядра и электронной оболочки — совокупности элементарных отрицательно заряженных частиц — электронов. Ядро [c.6]

    Методом электронографии установлена структура молекулы этилена (рис. 87) все ядра лежат в одной плоскости, углы между направлениями связей очень близки к 120° (угол С — С—Н составляет 121,4°) длины связей г(С—Н) = 1,10310 м, г (С = С) = 1,337 0,002 Ю > м. Средняя энергия связи ДС = С) = 598,3 кДж/моль. Эти экспериментальные данные позволяют провести описание электронной структуры молекулы при помощи двухцентровых орбиталей метода ЛМО. Плоское строение молекулы и угол между связям 120° (как и в молекуле ВРз) позволяют считать, что в локализованных а-связях атом углерода участвует гибридными. ф -орбиталями. Каждый атом углерода участвует своими [c.207]

    Как известно, атом имеет сложное строение. Он состоит из тяжелого центрального ядра, обладающего положительным электрическим зарядом, и вращающихся вокруг него на сравнительно далеком расстоянии электронов — значительно более легких частиц с отрицательным электрическим зарядом. Электроны в атоме удерживаются электрическими силами, действующими между положительно заряженным ядром и отрицательно заряженными электронами. [c.90]

    Изотопы. Протонно-нейтронная теория позволила разрешить и еще одно противоречие, возникшее при формировании теории строения атома. Если признать, что ядра атомов элементов состоят из определенного числа нуклонов, то атомные массы всех элементов должны выражаться целыми числами. Для многих элементов это действительно так, а незначительные (отклонения от целых чисел можно объяснить недостаточной точностью измерений. Однако у некоторых элементов значения атомных масс так сильно отклонялись от целых чисел, что это уже нельзя объясннгь нелочностью измерении и другими случайными причинами. Например, атомная масса хлора равна 35,45. Установлено, что приблизительно три четверти существующих в природе атомов хлора имеют массу 35, а одна четверть — 37. Таким образом, существующие в природе элементы состоят из смеси атомов, имеющих ра и ые массы, но, очевидно, одинаковые химические свойства, т. е. существуют разновидности атомов одного элемента с разными и притом целочисленными массами, Ф. Астону удалось разделить такие смеси на составные части, которые были названы изотопами от греческих слов изос и топос , что означает одинаковый и место (здесь имеется в виду, что разные изогоны одного элемента занимают одно место в периодической системе), С точки зрения протонно-нейтронной теории изотопами являются разновидности элементов, ядра атом.ов которых содержат различн-je число нейтронов, но одинаковое число протонов. Химическая природа элемента обусловлена числом протонов в атомном ядре, ко- [c.22]

    Положение углерода и кремния в периодической системе и строение их атомов. Углерод и кремний находятся п главной подгруппе IV группы пер 1однческон сргстемы. Углерод — во втором, а кремний — в третьем периодах. Порядковый номер (заряд ядра ато да) углерода 6, кре-лгшя 14. [c.131]

    Вскоре после открытия нейтрона советские ученые Д. Д. Иваненко и Е. Н. Гапон создали протонно-нейтронную теорию строения ядра (1932). Согласно этой reopirn ядра всех атомов, кро.ме ядра ато.ма водорода, состоят из Z протонов и (Л — Z) нейтронов, где Z — порядковый номер эле. 1ента, А - массовое число. [c.30]

    НОВ в атоме, тем меньше ударяющий электрон будет отклоняться от своего первоначального направления. В результате воздействия ударяющего электрона атомные электроны смещаются относительно ядра, т. е. происходит поляризащ1я атома. Величина смещения атомных электронов зависит от силы связи их в атоме, которая определяется зарядом ядра и строением электронной оболочки. Поляризуемость атома растет с увеличением атомного номера. Чем больше поляризуемость, тем легче происходит смещение электронов атома при взаимодействии с ударяющим электроном. При достаточно большом взаимодействии смещение одного из электронов достигает критической величины, и он покидает атом, т. е. происходит ионизация. При этом ударяющий электрон отдает часть своей энергии, соответствующую энергии ионизации и кинетической энергии выбитого электрона, и продолжает свое движение с измененной скоростью и в из.ме-ненном направлении. [c.28]

    При приближении электрона к атому возникает взаимодействие создаваемого падающим электроном электрического поля с одним из электронов, принадлежащих атому. Глубина проникновения падающего электрона в электронную оболочку атома или молекулы зависит от его энергии и направления, а также от свойств электронной оболочки атома. Падающий электрон отклоняется от своего направления вследствие отталкивания атомными электронами. Чем больше скорость падающего электрона и чем меньше содержится электронов в атоме, тем меньше падающий электрон будет отклоняться от своего первоначального направления. В результате воздействия падающего электрона атомные электроны смещаются относительно ядра, т. е. происходит поляризация атома. Величина смещения атомных электронов зависит от силы связи их в атоме, которая определяется зарядом ядра и строением электронной оболочки. Поляризуемость атома растет с увеличением атомного номера. Чем больше поляризуемость, тем легче происходит смещение электронов атома при взаимодействии с падающим электроном. При достаточно большом взаимодействии смещение одного из электронов достигает критической величины и он покидает атом, т. е. происходит процесс ионизации. При эт падающий элек- [c.30]

    В 1912 году английский учёный Резерфорд выдвинул теорию строения атома, согласно которой атом состоит из ядра и электронов. Ядро много меньше самого атома, по в нём сосредоточена почти вся его масса. Для наглядности можно. мысленно увеличить размеры атсмя до раз.ме-ров Большого театра в Москве при таком увеличении ядро ато.ма не превысит по величи не муху. Ядро и.меет полол<ительный электрический заряд и окружено облако.м электронов, вращающихся на некотором расстоянии от [c.89]

    При обсуждении э.пектронного строения многоэлектронного атома следует исходить из наличия у него ядра и соответствующего числа электронов, Будем предполагать, что допустимые электронные орбитали, если и не точно идентичны орбиталям атома водорода, то представляют собой нечто подобное им-так называемые водородоподобные орбитали. Тогда можно мысленно построить многоэлектронный атом, последовательно помещая на эти орбитали по одному электрону, причем процесс заселения следует начинать с наиболее низких по энергии орбиталей. Таким образом мы построим модель атома в его основном состоянии, т. е. в состоянии с низшей электронной энергией. Такой способ мысленного построения многоэлектронного атома впервые применил Вольфганг Паули (1900-1958), который назвал описанный процесс принципом заполнения. По существу, однако, процесс мысленного построения атома основывается на трех принципах. [c.386]

    Атом серы может совсем изменить направление течения реакции. Так, при хлорировании дибензтиофена при низкой температуре хлор не замещает атомов водорода в ядре, а присоединяется к атому серы. Атом серы легко окисляется до сульфоксида или сульфона. Сульфо-ксидная и сульфоновая группы оказывают направляющее влияние при вхождении замещающих групп, ориентируя их в положение 3 в бензтиофеновом ядре и в положения 3, 6 в дибензтиофеновом ядре. Сульфоны и сульфоксиды гомологов дибензтиофена приобрели за последнее время большое научное значение при доказательстве строения соединений этого класса. При действии на сульфоновые соединения щелочи отщепляется группа 30г, раскрывается тиофеновое кольцо и дибензтиофен переходит в соответствующий гомолог дифенила  [c.352]

    Строение трехатомных молекул состава ЭНз. Расположим ядра атомов молекулы состава ЭН2, где Э = О, 8, 8е, Те, так, как показано на рис. 4.24. Каждый атом Э имеет на внешней электронной оболочке одну в- и три р-орбитали, атомы водорода — по одной АО 1. -типа. Относитальное расположение взаимодействующих орбиталей также показано на рис. 4.24. [c.131]

    Строение атома яодорода. Атом водорода имеет наиболее простое строение один электрон движется в поле ядра. Для такой системы функция потенциальной энергии, входящая в уравнение Шредингера, имеет вид  [c.23]

    Электронное строение атома в нормальном (невозбужденном) состоянии определяется числом электронов в атоме. Если атом не возбужден, электроны занимают такие орбитали, на которых их энер-ния минимальна. Число электронов в атоме равно положительному заряду ядра. Таким образом, заряд ядра является характеристикой, определяющей электронное строение атомов, а следовательно, и свой-ст1ва элементов. Поэтому в настоящее время периодический закон формулируется следующим образом свойства элементов находятся в периодической зависимости от заряда ядра их атомов.  [c.56]

    Проблемы, существовавшие в то время в теории строения атома, не были проблемами, касающимися исключительно расположения электронов и ядра в атоме. Следовало еще выяснить, как атом может дать дискретный спектр, если этот спектр испускается атомом как таковым. Ни Томсон, ни Резерфорд не могли дать удовлетворительного ответа на этот вопрос. Важный вклад был сделан в 1907 г. Конвэем, который впервые попытался объяснить это явление в плане квантовых идей. Не используя никакой атомной модели, Конвэй сделал заключение о том, что атом испускает энергию, соответствующую спектральной линии, и что появление полного спектра объясняется очень большим числом атомов, в каждом из которых один электрон находится в возбужденном состоянии. [c.29]

    Вспомним, что связь образуется за счет перекрывания орбита-лей при сближении атомов. Поскольку для гибридных орбиталей электронная плотность сосредоточена в одном направлении (в отличие от симметричного относительно ядра распределения электронной плотности 5-, р- и -орбиталей), в этом случае обеспечивается более эффективное перекрывание атомных орбиталей, и именно система гибридных орбиталей должна использоваться для образования связей. В соответствии с этим (см. рис. 16) атом Mg, имеющий гибридные 5р-орбитали, дает молекулы линейного строения атом В — плоские молекулы (например, ВРз) с тремя связями, на-правленнрлми под углом 120° друг к другу атом С — молекулы, в которых оп находится в центре тетраэдра, образуемого четырьмя связанными с ним атомами. В молекуле РСЬ атом Р находится в центре трехгранной бипирамиды, образуемой пятью атомами хлора, а в 5Р б атом 5 находится в центре октаэдра с шестью атомами Р в его вершинах. [c.77]

    Так как атомы электронейтральны, то, следовательно, в них должны содержаться и какие-то частицы, заряженные положительно. При изучении внутреннего строения атомов очень важное значение имели опыты по рассеянию а-частиц при прохождении их в газе и через металлическую фольгу (а-частицы заряжены положительно). В камере Вильсона наблюдаются прямолинейные пути а-частиц в газе. Следовательно, а-частица проходит сквозь атомы. Однако она, хотя и редко, но резко отклоняется от прямолинейного пути, что указывает на столкновение ее с положительно заряженной частицей. Эти наблюдения привели к выводу, что атом состоит из положительно заряженного ядра весьма малого объема (г = = Ю- з см), в котором сосредоточена почти вся масса атома, и электронов, находящихся на значительном расстоянии от ядра. На основании обобщения экспериментальных данных, Резерфорд в 1911 г. предложил планетарную модель атома, согласно которой атом в целом дейтраден. а положительно заряженное ядро его окружено эле1 омм п ичем ч заряду ядра (порядковому [c.15]

    Они имеют одинаковый положительный заряд ядра, а значит, и одинаковое количество эле7<тронов, но разную массу. Например, хлор имеет два изотопа с массами 35 и 37 единиц. Так как положительный заряд ядра равен 17, то атом первого изотопа содер-х ит 18 нейтронов, а атом второго — 20. Вокруг ядер каждого из игютопов вращается по 17 электронов. В природном хлоре одновременно имеются и те и другие изотопы, поэтому масса природного хлора является средней — 35,457 (убедитесь в этом самостоятельно, зная, что в природном хлоре содержится 75,4% изотопа С1" и 24,6% изотопа С ). Более подробно о строении ядра сы. далее 6—10. [c.35]


Смотреть страницы где упоминается термин Ядро атома, строение: [c.60]    [c.333]    [c.247]    [c.262]    [c.21]    [c.56]    [c.159]    [c.181]    [c.52]   
Общая химия (1987) -- [ c.44 , c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Атом внешних электронных уровней строение диаметр заряд ядра и порядковый номер

Атомов строение

Атомы и молекулы — 34. Периодический закон химических элементов Д. И. Менделеева — 35. Открытие радиоактивности. , Р и - излучение — 37. Строение атомов — 42. Атомное ядро, протоны и электроны — 46. Изотопы и искусственная радиоактивность — 49. Радиоактивные изотопы в биологии

Естественная система атомных ядер (атомов) — новая ступень в обобщении знаний о строении материи

Макротела, ядра, электроны — 13. 2. Макротела и молекулы, атомы, молекулярные и атомные ионы — 15. 3. Замечания о развитии классической и квантовомеханической теории строения молекул

О строении атомов и атомных ядер

ПЕРИОДИЧЕСКИЙ ЗАКОН МЕНДЕЛЕЕВА. СТРОЕНИЕ АТОМА. ЭЛЕКТРОННЫЕ КОНФИГУРАЦИИ АТОМОВ АТОМНОЕ ЯДРО

СТРОЕНИЕ АТОМА. ЭЛЕКТРОННЫЕ КОНФИГУРАЦИИ АТОМОВ. АТОМНОЕ ЯДРО

Строение ароматического ядра электронное атома

Строение атома Электроны и атомное ядро

Строение атома. Электронные конфигурации атомов. Атомное ядро. Периодический закон и периодическая система элементов Д.И.Менделеева

Строение атома. Ядра атомов

Строение атома. Ядро атома. Плазма

Строение атомов. Периодический закон и система химических элементов Д. И. Менделеева Ядерная модель строения атома. Масса, размер, заряд ядра Изотопы и меченые атомы

Строение ядер атомов химических элементов. Изотопы Строение электронных оболочек атомов на примере элементов IV периода

Строение ядра атома. Изотопы

Теория строения ядер атомов. Закономерности ) изотопии. Методы получения атомной энергии

Элементы химические строение ядер атомов

Ядра атомов



© 2024 chem21.info Реклама на сайте