Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стойкость химическая бронз

    Бронза — сплав меди с оловом, алюминием, кремнием и другими элементами. Бронзы различают а) по составу — простые и сложные б) по структуре — однофазные и двух-,или многофазные в) по способу изготовления деталей — литейные и деформируемые. Для химического оборудования широкое распространение получили алюминиевые бронзы, достаточно прочные и обладающие более высокой коррозионной стойкостью, особенно в кислотах, чем медь. Однако при длительной эксплуатации в растворах некоторых солей (сульфатов, хлорида натрия), а также едких щелочей наблюдается избирательная коррозия алюминиевых бронз, в результате которой постепенно снижается прочность и пластичность сплавов. При введении марганца коррозионная стойкость алюминиевых бронз повышается. [c.114]


    Химическая стойкость оловянистых бронз несколько выше стойкости меди, в частности, в разбавленных растворах серной кислоты, многих органических кислотах и растворах солей. Азотная кислота и другие окислители, а также аммиачные растворы оказывают на бронзы такое же действие, как и на медь. [c.136]

    Алюминиево-железные бронзы с добавкой никеля, называемые обычно Бр АЖН (5—6% N1), сохраняют свои механические свойства и химическую стойкость и при высоких температурах порядка 500°. Химическая стойкость алюминиевых бронз выше, чем оловянистых бронз и меди. Они стойки в разбавленных растворах кислот, не являющихся окислителями, в том числе в соляной кислоте, фосфорной, уксусной, а также лимонной и многих других органических кислотах. [c.137]

    Данные о химической стойкости некоторых бронз в серной кислоте приведены в табл. 27. [c.146]

    Химическая стойкость оловянистых бронз несколько выше стойкости меди, в частности в разбавленных растворах серной кислоты, во многих органических кислотах и растворах солей. [c.67]

    В табл. 24 приведены данные о химической стойкости некоторых бронз в серной кислоте. [c.67]

    Для некоторых систем первые пороги устойчивости отсутствуют, а коррозионная стойкость наступает только при высоких значениях п, как это видно из кривой изменения химической стойкости для системы Си—Аи в концентрированной азотной кислоте плотности 1,3-Ю кг/м при температуре 90° С (рис. 97). Известны случаи наступления коррозионной стойкости, например для бронз, и при более высоком пороге устойчивости. [c.126]

    Кавитация приводит к эрозионному и коррозионному разрушению металлов, особенно чугуна и углеродистой стали. Более устойчивы к кавитационному разрушению материалы, которые наряду с механической прочностью (противодействие эрозии) обладают химической стойкостью (противодействие коррозии), например, нержавеющая сталь и бронза. [c.64]

    Металлокерамические фильтры изготавливают из металлических порошков прессованием, прокаткой и спеканием. В качестве металлических порошков обычно используют бронзу, нержавеющие и малоуглеродистые стали, которые могут быть хромированы для повышения коррозионной стойкости. Физические свойства, химический состав, структура, пористость и прочность металлокерамических фильтров могут быть весьма разнообразными. Размер отверстий в таких перегородках может быть 1 —75 мкм, а пористость достигать 50 %. Прочность на растяжение достигает 70 МПа/м . [c.219]


    Благодаря своей износостойкости полиамиды успешно заменяют металлические материалы, например бронзу, в различных деталях. Так, лопасти гребных винтов, полученные из полиамида методом химического формования и использующиеся на небольших береговых военно-морских судах, гораздо меньше подвержены кавитации и эрозии, чем гребные винты, изготовленные из бронзы. Дополнительным преимуществом полиамидов является их высокая стойкость к коррозии в морской воде. Полиамиды также успешно используют при облицовке желобов, в приводных ремнях и ковшах транспортеров, где материал подвергается эрозии под действием ударов твердых частиц, например угля или минеральных руд. При за- [c.126]

    Твердость, прочность и химическая стойкость латуней ниже, чем у меди и бронзы. [c.132]

    Цветные металлы и их сплавы. В химической промышленности помимо стали и чугуна применяют алюминий, медь, титан, тантал, никель, свинец, а также сплавы на их основе — латуни, бронзы. Химическая стойкость цветных металлов к воздействию агрессивных сред зависит от их чистоты. Примеси других металлов значительно снижают химическую сопротивляемость цветных металлов, но повышают их механическую прочность. [c.22]

    Применение. Большая часть О. расходуется для производства различных подшипниковых (баббит) и типографских (гарт, пьютер) сплавов, бронзы, латуни, а также в химической промышленности для тепловой стабилизации или при синтезе полимеров, О.-содержащих химических веществ. Важной областью применения О. является лужение стали. О. используется в различных транспортных средствах, машинном и электрооборудовании, при прокладке труб, в отопительных системах, для соединения швов контейнеров. В припойных сплавах, не содержащих свинца, О. сплавляется с серебром, сурьмой, цинком или индием для получения особых свойств сплавов — повышенной прочности или коррозионной стойкости, о. является компонентом титановых сплавов для авиапромышленности, циркониевых сплавов для атомных реакторов. О. используется для производства автомобильных радиаторов, при изготовлении кондиционеров, теплообменников в электронной промышленности, при производстве компьютеров в стоматологии (амальгамы) при изготовлении жаростойких эмалей и глазури при протравном крашении тканей в производстве сверхпроводящих материалов в консервной промышленности и др. [c.405]

    По способности сопротивляться различным агрессивным средам наиболее универсальными свойствами обладают сплавы хастеллой (N1 — Мо — Си — Ре — Сг — 51), медноникелевые сплавы, титан, фосфористые бронзы и нержавеющие стали. Последние ввиду своей технологичности и экономичности получили наиболее широкое применение. Однако и при выборе нержавеющих сталей надо соблюдать известную осторожность, имея в виду, что понятие нержавеющая сталь еще не означает абсолютную стойкость во всех случаях. Покажем это на примере серной кислоты, являющейся, наряду с соляной, наиболее агрессивной. На рис. 207 представлены диаграммы, на которых очерчены области кон центраций и температур, в которых нержавеющие стали различных марок обладают удовлетворительной коррозионной стойкостью и могут применяться для химической аппаратуры [7]. [c.380]

    В тех случаях, когда использование таких материалов, как бронза, баббиты, металлокерамика и т. п., недопустимо из-за контактирования пары трения с агрессивной средой, применяют углеграфиты. Эти материалы имеют высокую химическую стойкость в большинстве основных агрессивных сред их используют для изготовления уплотнительных колец, подшипников скольжения, лопаток роторных воздуходувок и т. п. [c.576]

    В сернокислотной промышленности асбовинил не получил пока широкого применения. Хорошее сцепление с металлом, легкость нанесения в виде футеровочной массы обычными штукатурными методами, химическая стойкость в сернистой кислоте и в серной кислоте слабых и средних концентраций в пределах температур от —50° до 4-100° делают асбовинил пригодным для предохранения от коррозии насосов промывных отделений сернокислотных заводов. На одном из сернокислотных заводов успешно работают на первой и второй башнях насосы, корпуса которых сделаны из сурьмянистого свинца (гартблей), а рабочие колеса и предохранительные втулки—-из бронзы. [c.130]

    В большем масштабе используют различные бериллиевые сплавы, в частности сплав меди с 2% (масс.) Ве — бериллиевую бронзу, обладающую твердостью стали и очень высокой химической и механической стойкостью. Из бериллиевых сплавов изготовляют ответственные детали в химическом машиностроении (лопасти дробилок и мельниц), неискрящий инструмент их используют в самолето- и автомобилестроении, в электротехнической и электронной промышленности и других областях. [c.322]

    Оловянистые бронзы обладают высокой коррозионной стойкостью и более высокой, чем у меди, механической прочностью. Они хорошо поддаются всем видам механической обработки. Олова в бронзах содержится не более 22%. Кроме олова, в этих бронзах имеются другие элементы (цинк, свинец, никель), которые придают бронзам нужные свойства. Ввиду дефицитности олова оловянистые бронзы применяют только для ответственных деталей (арматуры для пара и воды давлением до 25 ати и температурой до 250°С, подшипниковых деталей, деталей химической аппаратуры). [c.45]


    Из подобного же сплава (но с 2% ванадия) изготовляют духовые музыкальные инструменты. Хорошо известен сплав меди с 8% ванадия. Он используется как исходное сырье для получения сплавов меди с другими металлами. Бронзы и латуни, содержащие 0,5 /о ванадия, не уступают по механическим свойствам стали и поэтому идут на изготовление ответственных узлов и деталей сложного профиля. Химическая стойкость сплава никеля с 18—20% ванадия соизмерима с инертностью благородных металлов, поэтому из него делают лабораторную посуду. Добавки ванадия в золото придают последнему несвойственную ему твердость. [c.340]

    Алюминиевые бронзы содержат обычно не более 9— 10 % А1 (>8 % А1 уже приводит к образованию второй фазы). В АЬбронзу иногда вводят также небольшие количества Ре, Мп, N1. И хотя литейные свойства алюминиевых бронз несколько хуже, чем оловянистых, они имеют повышенную прочность (500—700 МПа) и хорошую химическую стойкость, особенно в неокислительных средах. В ряде случаев, например в органических кислотах, разбавленной НС1 и морской воде химическая стойкость алюминиевых бронз выше, чем оловянистых. [c.282]

    Алюминиевая бронза. Алюминиевая бронза, сбдер-жащая 5—10% алюминия, благодаря своей относительной доступности, хорошим механическим качествам и сравнительно высокой механической стойкости приобретает все большее значение в химическом аппаратостроении. Стойкость алюминиевой бронзы к растворам солей, в частности, к раствору поваренной соли, а также к разбавленным кислотам (серной, соляной и уксусной) во много раз превосходит стойкость других бронз и,латуни. [c.32]

    Химическая стойкость оловянистых бронз в растворах серной кислоты, в некоторых органических кислотах и смолах выше, чем стойкость меди. В азотной кислоте и в других окислительных средах, а также в аммиаке бронзы (как и латуни) неприменимы. Оловянистые бронзы в основном применяются для изготовления деталей, которые должны обладать высокой коррозионной стойкостью и хорошими антифрикционными качествами. Для литья, арматуры и антифрикционных деталей применяются оловянистые бронзы, содержащие олово, цинк и свинец. Для коррозион-ностойких антифрикционных деталей, в частности для деталей, работающих в морской и пресной водах, применяется бронза марки БрОЦСНЗ-7-5-1 для влажной атмосферы и пресной воды— БрОЦСЗ-2-5 для подшипников, втулок и вкладышей, не работающих в агрессивных средах,—БрОС7-17. [c.144]

    Торцовое уплотнение состоит из двух колец — подвижного и неподвижного, которые прижимаются друг к другу по торцовой поверхности пружиной. Торцовые уплотнения имеют следующие достоинства 1) в отличие от сальников при нормальной работе пе требуется их постоянного обслуживания 2) правильно подобранные торцовые уплотнения отличаются большой износоустойчивостью и, следовательно, долговечностью 3) обладают высокой герметичностью. Самый ответственный элемент торцового уплотне-чия —пара трения. Качество уплотнения и надежность его работы. ависят в основном от материала и качества обработки поверхностей трущихся колец. Одно из колец изготовляют не менее твердого материала — графита, другое — из кислотостойкой стали, бронзы или твердой резины. Для колец торцовых уплотнений применяют также фторопласт — 4 и керамику. Керамические кольца обладают химической стойкостью и износоустойчивостью, их недостаток— склонность к растр-ескиванию. [c.244]

    Бронза маркн Бр. АЖН 10-4-4 является наиболее прочной нз всех алюминиевых бронз. Сочетание большой прочности с высокой химической стойкостью делает ьту бронзу ценным материалом для изготовления деталей нефтяного и нефтехимического оборудования. [c.148]

    Бериллий — металл светло-серого цвета, тугоплавкий (т. пл. 1284 °С), самый легкий нз конструкционных материалов (плотность при 25 °С равна 1,847 г/см ). Впервые получен 1898 г. электролизом расплава, содержап его фторбериллат калия. Промышленное производство начато в 30-х годах нашего столетия. Бериллий находит широкое применение в специальных целях в качестве замедлителя и отражателя нейтронов, для получения сплавов, обладающих высокой электропроводимостью в механической прочностью, а также в качестве покрытия, наносимого термодиффузионным способом. Широкое распространение находят медно-бериллиевые бронзы (0,5—2% Ве), которые отличаются высокой твердостью и упругостью. Оксид бериллия (т. пл. 2550°С) —один из лучших огнеупоров, обладает высокой химической и термической стойкостью. Прокаленный оксид бериллия практически нерастворнм в кислотах и не взаимодействует с расплавленными металлами. [c.502]

    СТОЙКОСТИ. Особенно проблематичной является транспортировка ло трубам кислых солесодержащих сред. Для малых насосов применением керамики, химически стойких материалов и резиновой футеровки можно найти экономичное решение проблемы, однако для крупных насосов нужны металлические материалы высокой стойкости, что обычно обусловливает большие издержки и значительные трудности при обработке. При использовании катодной защиты для центробежных насосов можно применить более дешевые и лучше обрабатываемые материалы. Для сильно кислых сред следует выбирать материалы, защитные потенциалы которых не располагаются в области слищком интенсивного выделения водорода. Согласно данным раздела 2.4, применение черных металлов в таких условиях исключено, но медные сплавы вполне подходят. Наиболее подходящей можно считать оловянную бронзу. [c.389]

    Этому виду коррозии подвержены металлические материалы, в составе которых есть фазы с различной химической стойкостью. Наиболее распространенными видами избирательной коррозии являются графитизация серого литейного чугуна (избирательное растворение ферритных и перлитных составляющих), обесцинковаине латуней (селективная коррозия цинка), обезалюминивание алюминиевых бронз (растворение фаз, обогащенных алюминием). [c.53]

    Химический состав бронз приведен в табл. 94, скорости коррозип и типы коррозии — в табл. 95, их стойкость к коррозии под напряжением — в табл. 96 и изменения механических свойств — в табл. 97. [c.276]

    Как показал опыт эксплуатации, изделия из винипласта превзошли благодаря высокой химической стойкости такие антикоррозиоиые материалы, как фаолит, текстолит, кислотостойкую резину и др. В ряде случаев винипласт заменяет цветные металлы (свинец, бронзу, медь) и нержавеющую сталь. [c.63]

    Комплексом ценных качеств обладают высокохролмистые двухфазные аустенитно-ферритные стали. К этим качествам относятся высокая коррозионная стойкость, коррозионно-усталостная прочность, хорошие механические характеристики. Благодаря стойкости к коррозии под действием кавитации эти стали пригодны для изготовления деталей высокопроизводительных насосов, предназначенных для перекачки морской воды. В качестве примера [9, 10] можно указать стали следующего состава (в %) /—С (<0,08), 51 (0,1 —1,5), Мп (0,1—3,0), Сг (16,5—25,0), N1 (5,0—15,0), А1 (0,5—3,5), Мо (0,1—2,0) Я — С (<0,08), 51(0,1 — 1,5), Мп(0,1—3,0), Сг(17,0-21,0), N1 (4,0— 7,0), Мо (0,5—3,0), Со (0,5—4,0). Предел коррозионно-устало-стпой прочности сталей в морской воде при числе циклов нагружения 2-10 составляет 320 МПа коррозионно-усталостная прочность сталей в морской воде почти в два раза выше коррозионно-усталостной прочности никель-алюминиевых бронз. Двухфазные аустенитно-ферритные нержавеющие стали находят широкое применение в химической и нефтехимической промышленности в качестве коррозионно-стойких конструкционных [c.24]

    Характеристика промышленных катодов, применяемых при анодной защите химического оборудования, приведены в табл. 5.1. Там же указаны промышленные среды, в которых катоды преимущественно используют. Конструктивное оформление катодов и катодных узлов, а также способы их крепления на аппаратах показаны на рис. 5.4—5.6. Материал катода должен обладать высо кой коррозионной стойкостью в промышленных агрессивных средах не только при стационарном потенциале, но и в условиях анодной защиты оборудования, т. е. при катодной поляризации. Платиновые электроды, коррозионноустойчивые во многих агрессивных средах, из-за высокой стоимости применяют при анодной защите аппаратов небольших размеров. Обычно из платины в целях экономии изготовляют не весь катод, а лишь наружный слой, а основная масса электрода может быть выполнена из других металлов (серебра, меди, бронзы, латуни, свинца, титана [21). На рис. 5.4 представлен катод из латуни, покрытой платиной. Широкое распространение получили катоды из самопассивирующихся металлов. Так, в серной кислоте применяют ка- [c.258]

    В последнее время появились новые материалы на основе фторопласта-4 —наполненные, более прочные и износоустойчивые [2, 23, 24]. В качестве наполнителей используются графит и дисульфид молибдена, которые повышают антифрикционные свойства фторопласта-4, стеклонаполиители, улучшающие механические свойства, в частности износостойкость, и металлы (медь, бронза серебро и др.), повышающие теплопроводность и проч ность. Такие материалы марок ФКН-7, ФК.Н-14 Производятся в опытно-промышленном масштабе [2], Их химическая стойкость, особенно ФКН-14, несколько ниже, чем фторопласта-4, но они рекомендуются в качестве уплотнительных деталей компрессоров и насосов, например, для перекачки 15%-ной серной кислоты при 70°С. [c.160]

    Олово Присутствует в бронзах в твердом растворе и в виде соединений Си ЗПв, СизЗп, СиЗп, Си55п. Влияние олова на механические свойства сплава сходно с влиянием цинка. Однако пластичность сплава начинает падать уже при содержании 5% олова, прочность при 20 , поэтому олово в сплаве применяют не столько для придания сплаву прочности или пластичности, сколько для увеличения твердости и из-за способности сплава с оловом давать малую усадку при отливке. Вс ледствие этого бронзу используют главным образом для отливок, а не для изготовления изделий, получаемых прокаткой. Олово повышает химическую стойкость сплава к коррозии, поэтому бронзу применяют для арматуры в аппаратостроении. [c.321]

    Бронза марки БрАЖН 0-4-4 является наиболее прочной из всех алюминиевых бронз. Сочетание большой прочности с высокой химической стойкостью делает эту бронзу цепным материалом для [c.183]

    Фаолит применяют в химической промышленности в качестве одного из важных антикоррозийных конструкционных материалов. Из него изготовляют трубы, различную химическую арматуру, ванны, колонки и т. п. Он является эффективным заменителем цветных металлов (свинца, бронзы), кислотоупорных сплавов и керамики. Его стойкость к действию соляной кислоты имеет особо большое значение, так как во многих случаях из-за корродирующего действия соляной кислоты химические процессы приходилось вести на серной кислоте, хотя это делало их менее эффективными. Новые полимеризационные химически стойкие материалы (винипласт и др., стр. 241) также широко применяют в качестве конструкционного материала для химической промышленности однако большим преимуществом фаолита является его значительно более лысокая теплостойкость. [c.460]

    В литературе не имеется достаточно данных по химической стойкости материалов в процессах, связанных с применением Н-катионитов. Известно только, что для установок химического обессоливания воды рекомендуются в качестве конструкционных материалов хромоникелевые или углеродистые стали, защищенные винипластом, резиной, фаолитом, текстолитом, бакелитовым и перхлорвиниловыми лаками, поливинилбутиральной эмалью ВЛ—515. Мало устойчивы, в этих условиях медь, свинец и специальные бронзы алюминий и латунь не устойчивы. [c.85]

    Как правило, латуни в растворах муравьиной кислоты более стойки, чем бронзы никель обладает незначительной химической стойкостью сплав никеля с хромом (нихром) лучше, чем никель противостоит действию муравьиной кислоты. Например, при 20°С в 25%-ной муравьиной кислоте скорость коррозии нихрома равна нулю, а чистый никель в 20%-ном растворе при той же температуре корродирует со скоростью 1 мм1год. [c.93]

    Металлический бериллий используется как замедлитель нейтронов в установках для получения атомной энергии. Широко применяется в металлургии сплавов и стали придает твердость стали и повышает ее химическую стойкость. Медно-бериллиевая бронза имеет высокую стойкость против изнашивания и применяется при изготовлении деталей авиационных двигателей, радиоаппаратуры, а также часовых немагнитных пружин, безискрового инструмента, столь необходимого в работе с легковоспламеняющимися и взрывчатыми материалами. Сплавы бериллия с железом, хромом и ни- [c.235]


Смотреть страницы где упоминается термин Стойкость химическая бронз: [c.168]    [c.237]    [c.101]    [c.98]    [c.321]    [c.375]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.139 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминиевые бронзы химическая стойкость

Бронзы



© 2025 chem21.info Реклама на сайте