Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрики теория

    Затем Максвелл [60] разработал электромагнитную теорию оптических явлений для изотропных и анизотропных сред, связав двулучепреломление с диэлектрической постоянной и показателем преломления — тензорными характеристиками анизотропных диэлектриков. Теория Максвелла в более доступной форме была сформулирована Борном [61,62] и Зоммерфельдом [63]. [c.139]


    Увеличение объясняется поляризацией диэлектрика. Теория показывает, что молекулярная поляризация по Клаузиусу — Мосотти [c.170]

    Рассматриваемые ими диэлектрические жидкости, но существу, являются малоконцентрированными дисперсными системами как с частицами, внесенными в них, так и с теми, которые возникают в ходе старения диэлектрика. Теория связывает влияние дисперсных частиц на электрическую прочность жидкостей с а, к1, [c.37]

    Из теории а—с коэффициент мощности определяется как косинус фазового угла между напряжением и током, когда существует чистая синусоида для обоих он увеличивается с увеличением температуры. Если изоляционный материал служит диэлектриком конденсатора, то коэффициент мощности является собственным свойством диэлектрика. [c.205]

    Для определения величины <р,/Л1>, входящей в уравнение (15.4), необходимо проделать следующие операции 1) для фиксированного смещения зарядов (кроме электронов) молекулы воды, определяющих ее дипольный момент р/, найти среднее значение дипольного момента всей среды 2) учитывая различные возможные смещения зарядов сорбированной молекулы, рассчитать среднюю величину Ввиду сложности подобных расчетов в теории диэлектриков используется приближенный метод Кирквуда. Согласно этому методу, учитывается только короткодействующее взаимодействие между ближайшими соседними молекулами, и дипольный момент М определяется как векторная сумма дипольного момента молекулы и среднего значения суммы моментов ближайших соседей для фиксированного ц. Для жидкости с учетом эквивалентности всех молекул и направлений их дипольных моментов теория Кирквуда позволяет получить следующее выражение  [c.251]

    Необходимо отметить, что при интерпретации диэлектрических данных и проведении различных расчетов нужна дополнительная информация о системе сорбент — сорбированная вода, получаемая с помощью других физико-химических методов (ЯМР, ИК-спектроскопия и т. д.). Это может существенно повысить эффективность исследования диэлектрических свойств увлажненных материалов. В то же время высокая чувствительность диэлектрического метода дает возможность более детально исследовать сорбцию воды на различных материалах. Дальнейшее развитие диэлектрического метода зависит от установления более тесной и определенной его связи с другими физико-химическими методами, а также решения таких актуальных вопросов теории диэлектриков, как расшифровка диэлектрических спектров, расчет различных видов поляризации и диэлектрических характеристик системы сорбент — сорбированная вода. [c.254]


    Кристаллы неметаллических элементов с каркасной структурой, подобные углероду или кремнию, обладают свойствами диэлектриков (изоляторов), т.е. не проводят электрический ток. Применение теории молекулярных орбиталей к обсуждению химической связи в неметаллических каркасных кристаллах сталкивается со значительными трудностями. Достаточно сказать, что в ковалентных каркасных кристаллах обычно удается вести подсчет валентных электронов вокруг каждого атома, подобно тому как это делается при составлении льюисовых структур, и оказывается, что при этом выполняется правило октета. Это объясняется тем, что атомы в неметаллических каркасных кристаллах обычно имеют по крайней мере столько валентных электронов, сколько у них есть валентных орбиталей. Следовательно, в таких кристаллах предпочтительны низкие координационные числа, и между каждым атомом и его ближайшими соседями могут образовываться простые двухэлектронные связи. Низкие координационные числа являются причиной того, что потенциальная энергия электрона внутри таких кристаллов не постоянна она значительно понижается в межъядерных областях, и поэтому электроны не могут свободно перемещаться по кристаллу, подобно тому как это происходит в металлах. [c.629]

    Свойства металлов и ковалентных каркасных кристаллов можно интерпретировать в рамках представлений о делокализованных молекулярных орбиталях, рассматривая весь исследуемый объем вещества как одну гигантскую молекулу . Основанная на таких представлениях зонная теория позволяет объяснить многие наблюдаемые свойства проводников, полупроводников и диэлектриков (изоляторов). [c.640]

    Основанная на теории МО зонная модель электронного строения металлов, полупроводников и диэлектриков может показаться не сразу очевидной всем студентам, но после ее обсуждения и объяснения она обычно усваивается. Последний раздел, посвященный силикатам, можно опустить без ущерба для усвоения важнейших понятий, но он дает хорошую возможность закрепить положение о связи между структурой и свойствами и обычно вызывает интерес у студентов. [c.577]

    Фундаментом прогнозирования активности, селективности и других специфических свойств катализатора должна стать детальная микроскопическая теория гетерогенного катализа, опирающаяся на современные представления квантовой химии и теории твердого тела. Описывая элементарные акты реакций и превращений вещества на поверхности реального катализатора, такая теория в принципе дает возможность не только в полной мере понять механизм, кинетику и термодинамику катализа, но и предсказать каталитическую способность того или иного металла, полупроводника, диэлектрика в конкретной химической реакции. Однако незавершенность теорий катализа не позволяет однозначно предсказывать оптимальный состав промышленных катализаторов и другие их характеристики для действующих и проектируемых производств. До сих пор решение проблемы подбора катализаторов опирается в значительной мере на эмпирические подходы, сопряженные с большими затратами рутинных форм труда. Так, в поисках первого катализатора для синтеза аммиака было исследовано около 20 тыс. различных веществ [1, 2]. В 1973 г. число известных органических соединений оценивалось в 6 млн. Ежегодно только в нашей стране синтезируется более 40 тыс. новых химических соединений. Таким образом, разработка научно обоснованных целенаправленных стратегий поиска катализаторов представляет актуальную проблему современного катализа. Актуальность проблемы подтверждается еще и тем, что коло 90% промышленных химических и нефтехимических производств ведется с применением катализаторов. [c.56]

    Очистка масел в электрическом поле является одним из сравнительно новых способов и недостаточно широко применяется на практике. В то же время электрокинетические свойства нефтяных масел, являющихся диэлектриками, определяют возможность и целесообразность их очистки с применением электрического поля. Практический опыт подтверждает, что такая очистка нефтяных масел от твердых загрязнений и воды в некоторых случаях довольно эффективна, однако отсутствие единой теории электрокинетических явлений в жидкой диэлектрической среде тормозит развитие этого перспективного метода очистки. [c.167]

    Второе усовершенствование, особенно важное для эмульсионных систем — учитывает влияние замедления сил Лондона между атомами, находящимися на относительно больших расстояниях, сравнимых с характеристическими длинами волн электронов Лондона (—10 см, т. е. 0,1 мкм для прозрачных диэлектриков). Согласно теории Казимира и Польдера (1946, 1948), величина энергии взаимодействия Лондона делится на коэффициент Р, равный [c.95]

    В начале прошлого века Максвелл, создав теорию электромагнетизма, начал изучать диэлектрические свойства веществ, обусловленные их гетерогенностью. Примерно в то же время коллоидные дисперсии рассматривались как один из видов гетерогенных систем. Позднее Дебай предложил теорию полярных молекул, рассматривая их как частный случай диэлектриков. Такая трактовка вызвала большой интерес среди исследователей, в результате чего теория полярных молекул получила широкое применение и была распространена на область коллоидного состояния вещества. Это влияние можно проследить на примере исследований диэлектрических свойств макромолекулярных и протеиновых растворов, адсорбции молекул на порошках твердого вещества и т. д. По этому вопросу имеется значительное число работ как обзорного, так и оригинального характера. [c.313]


    Одновременное измерение 8 и х в широком диапазоне частот является существенным как теоретически, так и экспериментально, так как приводит к более точно сбалансированному состоянию моста и более точным измерениям. Кроме того, общая теория диэлектриков учитывает явления электропроводности и предполагает частотную зависимость диэлектрических характеристик. [c.324]

    Согласно теории диэлектриков, поведение, отражаемое правилом круговой дуги, является результатом стохастического распределения времени релаксации при данных исследованиях. Это распределение в каждом случае характеризуется коэффициентом р и связано с величиной То для данного диэлектрика. [c.390]

    Из рис. У.64 видно, что теоретические и экспериментальные значения е молекулярных растворов характерны и для дисперсных состояний. Интересно отметить, что этот рисунок представляет иллюстрацию двух методов оценки диэлектрических свойств систем, показанных в табл. У.2 (см. стр. 325). Очевидно, что крупнодисперсные системы (размеры частиц > 10 см) можно рассматривать в свете диэлектрической теории гетерогенных систем, а гомогенные системы (размеры частиц < 10" см) — в свете молекулярной теории диэлектриков. [c.405]

    Эффект от замены может быть усилен путем выбора соответствующего полимерного материала. Согласно теории регулярных растворов /11/, адгезия между диэлектриками будет тем слабее, чем больще разница между плотностями энергии когезии молекул соприкасающихся тел. Так как энергия когезии в кристаллах парафина обуславливается слабыми дисперсионными силами, то следует ожидать, что увеличение интенсивности межмолекулярных сил в материале защитного покрытия приведет к увеличению указанной разности и снижению сил прилипания между поверхностью под- [c.143]

    Заслуживает внимания также вытекающая из строгого результата макроскопической теории приближенная формула, применимая в широком диапазоне расстояний (/г 10 М) для диэлектриков, диэлектрическая проницаемость которых в области высоких частот близка к диэлектрической проницаемости среды  [c.141]

    При изучении особенностей теплового пробоя важно знать значение напряжения, выше которого тепловое равновесие диэлектрика с окружающей средой уже не может быть достигнуто. Обобщенная теория теплового пробоя диэлектриков, учитывающая несимметричные условия охлаждения и тепловыделения в электродах, а также изменение удельной активной проводимости по толщине образца, была развита в работе [76]. Для пробивного напряжения данная теория дает выражение вида [c.205]

    Повышение температуры и напряжения приводит к интенсификации этих процессов. Процессы электрического старения описываются теорией разрядов в газовых включениях диэлектриков. Согласно этой теории, в постоянном электрическом поле частота следования разрядов выражает ся соотношением [c.205]

    Полное аналитическое решение для рассеяния излучения сферическими частицами, сравнимыми по размерам с длиной волны падающего излучения, было получено Ми в 1908 г. Однако, как отмечено Логаном основы теории впервые были изложены датским физиком Лоренцем еще в 1890 г. Используя решение векторного волнового уравнения, полученное в 1881 г. Лембом, Дж. Дж. Томсон опубликовал в 1893 г. формулы, выведенные позже Ми, для идеально проводящей сферы. В 1899 г. Лав (см. Хоуксли ) и Уокер показали, что решение Лемба — Томсона может быть использовано и для сферических частиц из диэлектриков. Теория Ми имеет весьма общее значение она применима как к мелким частицам, лежащим в релеевской области, так и к крупным, к которым применима классическая геометрическая оптика, причем не только к диэлектрическим, но и к поглощающим частицам. [c.116]

    Сжатие электролитов легко попять как проявление электрострикции. Так нагывается наблюдаемое на опыте сжатие диэлектриков в электрическом поле. Это явление противоположно пьезоэлектрическому эффекту. Очевидно, сжатие растворителя особенно велико вблизи поверхности иона, где электри-ческо ) поле достигает огромных величии, сжатие убывает в участках растворителя, более удаленных от иона, Используя теорию электрострикции, можно рассчитать распределение эффективного дополнительного давления вокруг иоиа этим давлением можно заменить электростатические силы так, чтобы возни <ало то же сжатие растворителя. Это давление на расстояниях от центра иона, лежащих между 0,8 и 12 А, изменяется от 5-10 до 0,5 бар (1 ба з= 10 н/л4 яс1 атм). Расчет сжатия под этими давлениями с учетом поляризации дает велич11Ны одного порядка с опытными. [c.419]

    Для исследования структуры и диэлектрических свойств сорбированной воды применяются различные физические и физико-химические методы, в частности диэлектрический метод. Сущность его заключается в измерении макроскопических характеристик поляризации диэлектрика во внешнем электрическом поле. В постоянном электрическом поле поляризация диэлектрика характеризуется статической диэлектрической проницаемостью Ез, в переменном — комплексной диэле1 трической проницаемостью е = е —ге". Установление связи между экспериментально определяемыми характеристиками е , е, г" и молекулярными параметрами диэлектрика является основной задачей теории диэлектрической поляризации [639, 640]. [c.242]

    После того как было рассказано о химической связи между неболь-щим числом атомов, объединенных в молекулы, можно перейти к рассмотрению связи в твердых и жидких веществах. Простая, но очень плодотворная теория электрических свойств кристаллов рассматривает весь кристалл как одну большую молекулу, по всему объему которой простираются делокализованные молекулярные орбитали. Она называется зоииой теорией металлов и диэлектриков (изоляторов). [c.601]

    Токи высокой частоты. Воздействие токами высоких частот или сокращенно ТВЧ (0,15-300 МГц) связано с возбуждением внешним электромагнитным полем в веществах в зависимости от их свойств, токов проводимости (вихревые токи Фуко) и токов смещения в диэлектриках. Протекание этих токов вызывает индукционный и соответственно диэлектрический нагрев материалов [14]. Существенный вклад в теорию и практику индукционного и диэлектрического нагрева внесли советские ученые В.П. Вологдин, Г.И. Бабат, A.B. Нету-шил, A.B. Донской и др. [c.82]

    Поляризуемость численно равна наведенному дипольному моменту при напряженности поля, равной единице. Уравнение Клаузиуса — Моссотти (1, 131) выведено в предположении однородности поля внутри диэлектрика и справедливо лишь для неполярных молекул газов и жидкостей и полярных молекул газов. Согласно электромагнитной теории света Максвелла [c.54]

    Следует отметить, что русские ученые разработали альтернативный путь для вычисления взаимодействия диэлектриков (Лившиц, 1955, 1956 Дзиазлошинский и др., 1960). Использование этого метода для вычисления энергий взаимодействия коллоидных частиц требует знаний диэлектрических свойств в пределах широкой области частот — данных, которые отсутствуют в настоящее время для многих веществ. Поэтому химики-коллоидники вынуждены прибегать к грубым приближениям, предлагаемым теорией Лондона. Однако эта теория разработана довольно хорошо в применении к дальнедействующим силам между отшлифованными поверхностями, поверхностной энергии неполярных жидкостей и энергии адсорбции простых неполярных молекул на твердых телах — например, бензол на графите (Киселев, 1965). Можно с уверенностью предположить, что эта теория дает правильный порядок величины энергии взаимодействия коллоидных частиц. [c.95]

    В этом случае более соответствует экспериментальным фактам электрическая теория адгезии /58/, которая позволяет следующим образом объяснять механизм процесса. Согласно этой теории, при тесном соприкосновений диэлектрика, каковым являются парафиновые дисперсные частицы, и кристаллического атомного тела, благодаря разности давлений электронного газа, часть электронов подложки переходит в парафиновую частицу, обра (уя двойной электрический слой между поверхностями. В результате парафиновые частицы заряжаются отрицательно, а металлическая поверхность подложки приобретает положительный заряд. По этой теории работа разрушения адгезионной связи, т.е. преодоления возникающих между поверхностями электрических сил, будет определяться формулой /56/ [c.111]

    Диэлектрическая проницаемость имеет важное значение во всех случаях, когда заряды различного знака разобщены средой со свойствами диэлектрика. Таким образом, если какое-либо вещество используется в качестве изолятора, то его изолирующие свойства в известной мере характеризуются величиной диэлектрической постоянной. Свойства растворов электролитов также в значительной степени зависят от величины диэлектрической проницаемости растворителя. Во все уравнения теории растворов сильных электролитов обязательно входит величина диэлектрической проницаемости. Нахгонец, знание величины диэлектрической проиидаемости пег.бходнмо для вычисления дипольного момента (см. стр. 411). [c.404]

    В физике твердого тела для различных классов кристаллов наблюдаются сверхсостояния (сверхпроводимость, ферромагнетизм и сверхпластичность для металлов, сегнетоэлектрическое состояние для диэлектриков), для квантовой жидкости (гелия) наблюдается сверхтекучесть. Полимеры обладают своим сверхсостоянием, которое называется высокоэластнческим состоянием. Высокоэластическое состояние объясняется не только структурой полимерных молекул или макромолекул, но и свойством внутреннего вращения, известным для простых молекул в молекулярной физике. Теория высокой эластичности основывается на применении конформ анионной статистики макромолекул, которая является развитием статистической физики в физике полимеров. Аморфные полимеры по структуре сложнее, чем низкомолекулярные вещества, но в их ближнем порядке примыкают к строению жидкостей. Релаксационные и тепловые свойства расплавов полимеров и жидкостей во многом аналогичны (процесс стеклования, реология). Кристаллические полимеры по своему строению похожи на твердые тела, но сложнее в том отношении, что наряду с кристаллической фазой имеют в объеме и аморфную фазу с межфазными слоями. По электрическим свойствам полимеры — диэлектрики и для них характерно электретное состояние, по магнитным свойствам полимеры — диамагнетики, а по оптическим свойствам они характеризуются ярко выраженным двойным лучепреломлением при молекулярной ориентации. При этом все полимеры обладают уникальными механиче- [c.9]

    Уравнения (7.2) и (7.3) получены Дебаем при условии, что все диполи в диэлектрике одинаковы и не взаимодействуют между собой, поэтому имеется одно время релаксации т. Однако в реальных диэлектриках, в частности полимерах, процессам релаксации присуще распределение времен Xi, описываемое релаксационным спектром. Тот факт, что диэлектрические свойства полимеров не могут быть точно описаны уравнением с одним т, был впервые принят во внимание Фуоссом и Кирквудом [7.2], которые прямым образом учли существование спектра времен релаксации для полимеров. Учет распределения времен релаксации в конденсированных системах, в которых отсутствуют дальнодействующие силы, сделан в теории диэлектрических свойств слабополярных систем. Если функция распределершя времен релаксации является симметричной, то для обобщенной диэлектрической проницаемости может быть использовано модифицированное уравнение Дебая вида [c.177]


Библиография для Диэлектрики теория: [c.284]    [c.262]   
Смотреть страницы где упоминается термин Диэлектрики теория: [c.116]    [c.245]    [c.248]    [c.199]    [c.137]    [c.345]    [c.186]    [c.314]    [c.112]    [c.392]    [c.397]    [c.27]    [c.293]   
Физическая химия Том 1 Издание 4 (1935) -- [ c.298 , c.300 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрики



© 2025 chem21.info Реклама на сайте