Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Противоточное распределение эффективность разделения

    В настоящее время термин хроматография используется как собирательное название для группы методов, которые на первый взгляд могут показаться не совсем одинаковыми. Тем не менее они имеют ряд общих черт. Например, все методы хроматографического разделения включают прохождение образца смеси через колонку или ее физический эквивалент. Эта смесь может быть жидкостью или газом. Колонка содержит неподвижную фазу — вещество, которое может представлять собой твердый абсорбент или жидкий разделяющий агент. Компоненты образца проходят через колонку в составе движущейся фазы — газовой или жидкой. Благодаря избирательному замедлению, вызываемому неподвижной фазой, компоненты смеси перемещаются через колонку с различными эффективными скоростями. Таким образом, наблюдается тенденция к разделению их на отдельные зоны или полосы , образующие так называемую хроматограмму. Хроматографические методы предназначены для обнаружения, характеристики и, если это необходимо, выделения этих полос в некоторой точке, обычно на выходе из колонки. Предельная разрешающая способность хроматографии достигается с помощью противоточного процесса, включающего распределение между двумя фазами (в результате адсорбции или растворения) на многих стадиях вдоль колонки. [c.306]


    В то время как большую часть указанных видов экстракции используют как в лабораториях, так и в промышленности в препаративных целях, противоточное распределение и распределительная хроматография предназначены главным образом для аналитической работы, определения чистоты или идентичности небольших количеств веществ и для изучения некоторых физико-химических свойств органических веществ. Распределительной хроматографии посвящена отдельная глава настоящей книги (гл. ХУП). Противоточное распределение по сравнению с другими видами экстракции будет рассмотрено более подробно, так как оно представляет собой новейший, очень эффективный метод разделения, который интенсивно развивается и все шире применяется в лабораториях органической химии. [c.380]

    Последовательное и фракционное экстрагирования, занимающие среднее положение между простым экстрагированием и противоточным распределением, предпочтительны в тех случаях, когда хотят с небольшими затратами времени и труда добиться более эффективного разделения. Использование этого метода для количественного анализа возможно только, если известен качественный состав смеси. Так, например, в свое время был разработан метод определения низших жирных кислот в смеси, основанный на принципе последовательного экстрагирования и титровании отдельных фракций [145, 155]. В настоящее время, когда имеются гораздо более точные и быстрые методы, основанные на распределительной, газовой и ионообменной хроматографии, эта методика уже устарела. [c.405]

    В своей современной форме противоточное распределение является одним из наиболее эффективных методов разделения веществ в органической лаборатории. Автор настоящей главы не ставил перед собой задачи дать исчерпывающий обзор по его применению, однако уже из данных табл. 35 видно, какое широкое распространение получило противоточное распределение в настоящее время. Как видно из табл. 35, наибольшее при- [c.433]

    При многоступенчатой экстракции (см. стр. 411) процесс установления равновесия в двухфазной системе чередуется с поступательным перемещением вещества по делительным воронкам. При этом разделяемые вещества, имеющие в данной системе фаз различные коэффициенты распределения, перемещаются по делительным воронкам с различной скоростью. Чем больше число переносов (т. е. число делительных воронок), тем эффективнее разделение. Однако с увеличением числа переносов увеличивается длительность всей операции. Для автоматизации процесса экстракции необходима сложная и дорогостоящая аппаратура. По сравнению с противоточной экстракцией метод распределительной хроматографии обладает тем преимуществом, что позволяет при значительно более простой аппаратуре добиться более эффективного разделения. В то же время распределительная хроматография имеет ряд специфических недостатков и ограниченную область применения. Поэтому противоточная экстракция и распределительная хроматография взаимно дополняют друг друга. [c.442]


    В противоположность простой или повторной экстракции при многократном распределении (так называемое фракционированное распределение или противоточное распределение [143—152]) речь идет в принципе об операции, которая совершенно аналогична дробной кристаллизации. Поэтому представленная на рис. 91 (стр. 225) схема дробной кристаллизации равным образом справедлива для фракционированного распределения, если вместо маточного раствора и кристаллов разделению подвергаются две жидкие фазы. Вещества, которые можно разделить фракционированным распределением, ограниченны по числу, но не по массе (как при дробной кристаллизации), так как при каждой операции распределение до полного установления равновесия можно провести гораздо легче при точном соблюдении количественных соотношений двух жидких фаз. При практическом осуществлении такого распределения перенос фазы может происходить либо пульсацией, либо непрерывно, так что разделяемую смесь веществ вводят либо один раз, либо подают непрерывно жидкость можно подавать как в начало, так й в се редину распределительного аппарата. Несколько различных способов распределения было предложено рядом исследователей . При проведении экстракции по Крэгу подлежащее распределению вещество вводят один раз в начало аппарата оно частично уносится более легкой мобильной) фазой, а частично прочно удерживается более тяжелой стационарной) фазой, так что разделяемые вещества концентрируются в зависимости от своих коэффициентов распределения в соответствующие фракции, легко поддающиеся предварительному расчету. Способ оказался очень эффективным для исследования неустойчивых органических природных веществ (пенициллин и т. п.). В неорганической химии этот способ можно применять, например, при разделении комплексных солей [154]. [c.190]

    В заключение необходимо отметить, что за последнее десятилетие достигнуты большие успехи в анализе, выделении и идентификации катехинов. Разработаны методы их количественного определения при помощи хроматографии на бумаге и методы препаративного выделения нри помощи хроматографии на колонках силикагеля и целлюлозы. Для предварительного разделения многокомпонентной смеси катехинов чайного растения применено противоточное распределение. Однако препаративное выделение катехинов все еще остается сложной задачей для экспериментатора. В будущем необходимо подобрать более эффективные системы растворителей для противоточного распределения, а также попробовать применить слабые адсорбенты (например, полиамиды или родственные им полимеры) для колоночной хроматографии катехинов. [c.92]

    Если многократная статическая экстракция сопровождается рядом последовательных промывок всех экстрактов (одного за другим) одними и теми же порциями промывной жидкости, то такой эффективный процесс разделения можно назвать статической полу-противоточной экстракцией (противоточное распределение [8]). Рассматривая последовательное изменение концентраций при возрастающем числе промывок и экстракций нетрудно получить общее выражение для концентрации вещества с коэ ициентом распределения О в т-й по порядку порции раствора (промывной жидкости) после приведения в контакт с этой порцией 5 порций растворителя [c.146]

    Из рис. 23-9 видно, что даже при небольшой разнице в значениях Ог и О] теоретически возможно количественное разделение путем увеличения числа равновесий и переносов. Эффективность метода противоточной экстракции велика. Это видно из сравнения факторов разделения, приведенных на рис. 23-3 и 23-9. Например, при Ог = 10 и О1 =0,1 достаточно всего пяти или шести стадий для количественного разделения и выделения обоих компонентов. Часто не обращают внимания на такое существенное требование, что в дополнение к благоприятному соотношению О2/О1 необходимо еще, чтобы абсолютные значения коэффициентов распределения Ог и О1 были не слишком малы и не слишком велики. Если значения Ог и О1 малы, разделение неэффективно, поскольку на каждой стадии переносится небольшое количество каждого компонента при больших значениях коэффициентов распределения для разделения необходимо большое число ступеней, поскольку оба компонента плохо удерживаются в водной фазе. [c.476]

    Сравнительно несложно определение пенициллина X, основанное на том, что, в отличие от остальных пенициллинов, он не способен экстрагироваться хлороформом из водного раствора, имеющего значения pH =2,0—2,5. После удаления этим растворителем остальных пенициллинов, пенициллин X может быть извлечен другим, более эффективным растворителем Описано также разделение всех четырех пенициллинов при помощи очень сложного способа так называемого противоточного распределения 5 . Этот прием может быть применен и для аналитических целей, хотя он и очень сложен. [c.124]


    Для расщепления ряда бруциновых солей рацемических кислот было использовано их распределение между водой и хлороформом" , т. е. использован метод экстракции. Ввиду того, что в настоящее время разработаны очень эффективные методы и приборы для проведения экстракционных процессов (обзор методов разделения веществ при помощи экстракции имеется в книге ), подобные методы могут оказаться практически весьма перспективными. Во всяком случае имеется работа , где на основе использования принципа противоточного распределения между двумя несмешивающимися жидкостями проведено весьма эффективное разделение. [c.418]

    Противоточное распределение. Этот метод применяют для фракционирования и анализа высщих жирных кислот эффективность его в значительной степени определяется выбором системы растворителей. Лучшие результаты получены при фракционировании метиловых эфиров жирных кислот. С помощью данного метода возможно разделение смеси кислот по длине цепи и степени ненасыщенности. Для разделения цис- и гранс-изомеров осуществляют их распределение между метанольным раствором нитрата серебра и изооктаном. Недостатком противоточного распределения является трудность разделения критических пар кислот. [c.196]

    Во ВНИИВодгео разработана более совершенная конструкция флотатора [57], в которой учтены основные недостатки применяемых конструкций (рис. 3.15). Исходная вода подается в распределитель, расположенный на половине глубины флотатора и работающий подобно типовым конструкциям. Различие состоит в том, что распределение воды происходит по всей площади сооружения. Рабочий объем флотатора над распределителем и под ним разделен коаксиальными цилиндрическими перегородками, которые препятствуют образованию циркуляционных потоков, что способствует более полному использованию, объема. Исследования промышленных флотаторов конструкции ВНИИВодгео диаметром 6 и 13 м показали, что коэффициент использования объема в них составляет около 80—90%, а противоточная схема движения пузырьков воздуха и рабочего потока воды способствует повышению эффективности очистки. Удельную гидравлическую нагрузку на них можно увеличить в 1,5—2 раза. [c.105]

    Майер и Томпкинс [31] для вычисления числа тарелок, необходимых для разделения, использовали хроматографическую теорию. Глюкауф [32] показал, что их расчеты неприемлемы для равновесных периодических процессов (противоточной экстракции Крейга), описанных в разд. 23-3, и приложимы к равновесным процессам в непрерывном потоке. Рис. 23-10 показывает, что разница между двумя моделями особенно велика, когда коэффициент распределения в жидкостной экстракции велик. Эта разница заметна, даже если вещество преимущественно удерживается в водной фазе. Экстракция в непрерывном потоке является менее эффективным способом разделения, чем противоточная экстракция Крейга. [c.479]

    Метод противоточной кристаллизации из расплава может быть использован для глубокой очистки некоторых летучих хлоридов (бор, титан, германий и галлий). Эффективность процесса разделения характеризуется определенными значениями коэффициентов распределения для равновесия твердое тело — жидкость, имеющими интервал значений от 1,5 до 10 для различных систем. Установлено, что коэффициент распределения в тех же системах для случая равновесия жидкость — пар не превышает значения 2,5. [c.110]

    Процессе позволяет сократить время хроматографического аминокислотного анализа по сравнению с временем наиболее распространенного ионообменного хроматографического процесса. Распределение веществ между паром и жидкостью при испарении и ректификации является областью, пригодной для разделения стабильных органических соединений. Эти методы не находят применения в химии белков, нуклеиновых кислот и их фрагментов. Несколько большие возможности для фракционирования веществ этих классов открывает экстракция. Однако область применения этой методики в виде ее наиболее эффективного варианта — противоточной экстракции — ограничивается лишь разделением сравнительно низкомолекулярных веществ — полипептидов. И только распределительная хроматография, основанная также на использовании принципа распределения веществ между двумя несмешивающимися жидкими фазами, дала ряд примеров успешного разделения смесей высокомолекулярных биологически активных веществ. [c.7]

    Хорошее разделение может быть также достигнуто с использованием экстракционной хроматографии, в которой используют распределение растворенного вещества между неподвижной жидкой фазой, закрепленной на подходящем инертном носителе, и подвижной жидкой фазой (см. гл. 9). В капельной противоточной экстракционной хроматографии подвижная фаза в виде множества отдельных капель проходит через серию (например 300) последовательно соединенных между собой колонок с малым внутренним диаметром, содержащих неподвижную фазу (рис. 15). Турбулентность внутри капли способствует эффективному распределению растворенного вещества между двумя фазами [154]. [c.45]

    Наши современные знания в области химии лишайниковых красителей обязаны работам Муссо (1955—1961). Методы, применявшиеся раньше для очистки орсеина, оказались недостаточно эффективными. Применяя распределительную хроматографию на порошкообразной целлюлозе или на кремнеземе, удалось выделить более 12 компонентов. Метод противоточного распределения Крэйга менее пригоден для препаративного разделения, но очень ценен для установления однородности препаратов, полученных после хроматографической очистки. Спектрографическое сравнение с модельными соединениями в сочетании с изучением продуктов разложения и синтетическими экспериментами привело к заключению, что эти пигменты являются производными феноксазона-2. Строение некоторых из них показано на схеме  [c.312]

    В классический период развития органической химии, длившийся почти столетие, экспериментатор обходился, как правило, небольшим числом сравнительно простых типовых методов. Для овладения экспериментальной техникой тех лет достаточно было научиться осуществлять синтез нескольких десятков соединений, так как основные операции выделения и очистки веществ часто повторялись и мало отличались друг от друга. За последние десятилетия арсенал методов и приемов, применяемых в органической лаборатории, неимоверно вырос. Особенно много принципиально нового введено в методы выделения веществ, эффективность которых неизмеримо возросла благодаря внедрению различных видов хроматографии, противоточного распределения, электрофореза и т. д. Появился целый набор специальных приемов для работы в микро- и полу-ми кромасштабах. Такие методы, как хроматография в тонких слоях и на бумаге, в сочетании с физическими методами идентификации и контроля позволили органикам непрерывно следить за ходом химических реакций или процессов разделения веществ. [c.5]

    Затем в качестве твердого носителя для разделения модифицироваииых аминокислот стали использовать фильтровальную бумагу. Хроматография на бумаге, единственный широко применяемый в биохимии вид жидкостной хроматографии, является одним из наиболее эффективных аналитических методов разделения. Полоску фильтровальной бумаги, на которую недалеко от верхнего конца нанесено некоторое количество смеси аминокислот, насыщают водной неподвижной фазой и помещают в камеру, насыщенную парами обеих фаз верхний конец полоски опускают в лодочку, содержащую подвижную фазу, п закрепляют в ней. Подвижная фаза под действием капиллярных сил поступает из лодочки и движется далее вниз по полоске бумаги. Индивидуальные аминокислоты перемещаются вниз по бумаге с различными скоростями, зависящими от их коэффициентов распределения для данной пары фаз (по аналогии с противоточным распределением или колоночной жидкостной хроматографией). Порядок движения аминокислот по бумаге различен в разных растворителях, и ни один из применяемых растворителей не позволяет произвести полное разделение всех 20 аминокислот, но, используя хроматографирование в двух перпендикулярных направлениях (рис. 5.14), можно добиться полного их разчсления. Аминокислоты можно обнаружить, опрыскивая бумагу раствором нингидрина, что приводит к появлению синеватых окрашенных пятен аминокислот. Описанная методика соответствует нисходящей бумажной хроматографии. Иногда в [c.149]

    Тот факт, что распределение вещества на колонке описывается кривой аусса указывает на общность законов, лежащих в основе распределительной хроматографии и противоточной экстракции (см., например, рис. 384 в разделе Противоточное распределение ). Как в том, так и в другом методе эффективность разделения прямо пропорциональна числу переносов. Теоретически при распределительной хроматографии число перено- [c.445]

    Принцип распределения вещества между двумя фазами, находящимися в равновесии, лежит в основе всех важнейших процессов разделения, осуществляемых в области экстракции, дистилляции, противоточного распределения и в различных методах хроматографии. В колоночной хроматографии одна фаза находится в неподвижном состоянии внутри колонки, а другая совершает поступательное движение. При этом происходит перенос вещества вдоль колонки со скоростью, кото]в ая лищйеделяете равнов есие распределения вещества между-двумя фазами. В газожидкостной хроматографии стационарной фазой является жидкость, нанесенная в виде пленки на тонкоизмельченном, инертном, твердом носителе, а подвижной фазой — газовый поток, протекающий над неподвижной жидкой пленкой. Поведение вещества, проходящего через такую колонку, описывается теорией теоретических тарелок, первоначально разработанной для жидкостной хроматографии Мартином и Синджем [7 ]. Эта теория была позднее применена к газо-жидкостной хроматографии Джеймсом и Мартином [5 ]. Многие расчеты, произведенные на основе теории, хорошо согласуются с экспериментально найденным распределением вещества в статических системах. Кроме того, расчет эффективности колонки на основе теории распределения позволяет вычислять различные экспериментальные параметры колонки и сравнивать их влияние на разделение. Рассматриваемая теория имеет еще и то преимущество, что она делает возможным сопоставление газо-жидкостной хроматографии с другими методами разделения, которые могут быть описаны на основе концепции теоретических тарелок. [c.75]

    Метод противоточного распределения, разработанный Крейгом [36], был применен для разделения смесей аминокислот и очистки белков [187]. Так как полярные группы, определяющие растворимость аминокислот, одинаковы для различных аминокислот, коэффициенты распределения аминокислот различаются незначительно, и, следовательно, их разделение становится трудной задачей. При ацетилировании [172] или образовании нипсиль-ных производных (/г-иодфенилсульфонилпроизводные) [94] фракционирование облегчается за счет уменьшения влияния полярных групп. Хроматографические методы значительно более эффективны по разрешающей способности, но они ограничены возможностью выделений сравнительно небольших количеств веществ. Успешное применение метода противоточного распределения зависит в значительной степени от подходящего выбора двухфазной системы растворителей. Кроме того, применение этого метода ограничивается возможностью разделения веществ низкого молекулярного веса 10 ООО), за исключением тех случаев, когда пептиды обладают большой устойчивостью к денатураций. В присутствии большинства двухфазных систем растворителей, как правило, легко происходит денатурация белков. Однако при нахождении благоприятных условий противоточное распределение-имеет преимущество по сравнению с другими методами, так как при этом возможно рассчитать коэффициенты распределения компонентов, которые могут быть установлены с большой точностью. Профиль кривой распределения дает хороший критерий чистоты вещества. [c.397]

    Как уже упоминалось, вследствие большого разнообразия стероидов невозможно привести общую методику приготовления образца. Тем не менее можно сделать несколько полезных замечаний. Поскольку большая часть стероидов является веществами нейтральными, можно рекомендовать использование распределения экстракта из природного объекта между органическим растворителем (как правило, толуолом, бензолом, хлороформом, хлористым метиленом, диэтиловым эфиром и этилацетатом) и водным раствором щелочи с целью удаления органических кислот и других кислотных продуктов, в тех случаях, когда органический экстракт содержит алкалоиды или другие примеси основного характера, полезна обработка экстракта разбавленной соляной кислотой. Однако при разделении между неполярным растворителем, например толуолом или хлороформом, и водным раствором сильной щелочи некоторые высокополярные нейтральные стероиды проявляют кислотные свойства [3]. К ним относятся экстрогены, имеющие слабокислый характер вследствие присутствия в них фенольного гидроксила, или желчные кислоты. В этом случае фильтрация образца через колонку, заиол-ненную ионообменной смолой, приводит к его обогащению [4, 5]. За исключением сложных эфиров стеролов и некоторых практически неполярных стероидов, сырые органические экстракты, содержащие стероиды растительного и в особенности животного происхождения, могут быть предварительно очищены перед вводом в колонку распределением экстракта между петролейным эфиром (или м-гексаном, -гептаном, а также другими углеводородами) и 90—95%-ным метанолом. Обычные стероиды остаются в полярной фазе, в то время как парафины, жиры и вышеупомянутые исключения — в углеводородном растворителе. В случае применения техники противоточного распределения обогащение более эффективно. [c.213]

    Практически применяемые способы противоточной экстракции различаются между собой тем, что обе фазы переносятся из одного сосуда в другой либо непрерывно, либо отдельными порциями. Они могут различаться также и тем, что подлежащее экстракции вещество добавляют все сразу в начале процесса или постепенно, на каждой отдельной ступени. Разные способы отличаются еще и тем, где производится подача вещества — в начало или в середину системы сосудов. Вышеописанный способ противоточной экстракции отдельными порциями позволяет гарантировать достижение состояния равновесия на каждой ступени настолько, что можно достигнуть аналитической точности распределение по Крейгу). Наиболее эффективного разделения можно достигнуть, если добавлять на каждой ступени распределения небольшие порции вещества в средние сосуды системы распределение по О Киффу). На практике используют автоматические приборы для распределения с несколькими сотнями распределительных ячеек (ступеней). Более подробно с этими методами можно ознакомиться в приведенной литературе (стр. 106). [c.76]

    Итак, в процессе жидкостной экстракции смеси компонентов последние будут распределяться между двумя фазами независимо и в степени, определяемой их коэффициентами распределения. Если эти коэффициенты — величины одного порядка (что имеет место в большипстве смесей химически подобных веществ), то процесс экстракции придется повторять очень много раз для достижения эффективного разделения часто при этом необходимо применение противоточного процесса. [c.354]

    Во многих случаях эффективным оказалось применение метода -противоточного распределения [107, 108]. Именно этот метод в сочетании с хроматографией позволил Бу-Локку и Джонсу с сотрудниками осуществить препаративное разделение, выделение и очистку специфической группы природных нолиинов, содержащих в молекуле концевую этинильную группу в сочетании с различным числом гидроксильных и карбоксильных групп. Общая методика выделения состоит в предварительном разделении смеси на нейтральную и кислую фракции. Последнюю затем метилируют и отдельно разделяют путем многократной хроматографии на окиси алюминия компоненты смеси элюируются обычно в следующем порядке  [c.21]

    Эффективным способом разделения смесей иридоидных и секоиридоидных глюкозидов является противоточное распределение [489—491]. Усовершенствованный вариант этого классического метода-—капельная противоточная хроматография — широко применяется при разделении гликозидов [492, 493], особенно иридоидов [494] и сапонинов [495—499]. [c.261]

    Для идентификации многих антибиотиков можно использовать также электрофорез [14—17] и противоточное распределение [18—20]. Что же касается разделения и идентификации антибиотиков с помощью ГЖХ [21—24], то в последние годы этот метод в значительной степени заменен на ВЭЖХ, основные преимущества которой заключаются в том, что она обеспечивает высокую скорость и эффективность разделения и детектирование злюата не сопряжено с разрушением компонентов анализируемой смеси. Вместе с тем ВЭЖХ не лишена и некоторых недостатков во-первых, при переходе от одного антибиотика к другому часто бывает необходимо менять систему растворителей и режим детектирования, и, во-вторых, ВЭЖХ в отличие от бумажной и тонкослойной хроматографии не позволяет одновременно анализировать несколько смесей. [c.145]

    Малый коэффициент распределения не позволяет эффективно разделять смесь направленной кристаллизацией и зонной плавкой. Противоточная кристаллизация из расплава на колонне высотой 25 см позволила достигнуть ВЭТС равной 7,5 см. Кристаллизационная колонна для разделения смеси МОС с коэффициентом распределения 1,1 должна иметь 72 теоретических ступени, чтобы получить из исходной смеси бисэтилбензолхром с содержанием основного компонента 99,99%. Проведенные опыты по очистке МОС от продуктов термораспада или других инородных примесей показали эффективность метода. Например, коэффициент разделения системы бензол—бензолэтилбензолхром составлял 0,3. [c.147]

    Большие значения коэффициентов распределения и(У1), Ри(1У) и Ри(У1) между фазами применяемых смесей обеспечивают эффективное извлечение (>99,9%) урана и плутония уже на первой стадии процессов. В то же время активность сопутствующих продуктов деления (порядка 10 кюри на тонну ядерного горючего в исходном растворе) обычно уменьшается в несколько сот раз, хотя некоторые отдельные продукты, особенно рутений, частично переходят в органическую фазу. Для последующего отделения плутония от урана также используют экстракцию органическими растворителями. Для этой цели плутоний восстанавливают до трехвалентного состояния (величина коэффициента распределения Ри(1П) чрезвычайно мала) в таких условиях, когда валентность урана (VI) не изменяется. В качестве восстановителей используют Ее(П), ЗОг или гидразин разделение урана и плутония проводят методом противоточной экстракции. Последующие этапы очистки фракций методами экстракции или ионного обмена необходимо также проводить при дистанционном управлении дальнейшие операции возможны уже без специальной защиты от у-излучения. Однако и в этом случае надо принимать меры предосторож- [c.486]


Смотреть страницы где упоминается термин Противоточное распределение эффективность разделения: [c.446]    [c.73]    [c.298]    [c.25]    [c.226]    [c.77]    [c.143]    [c.312]    [c.7]    [c.106]    [c.25]    [c.513]    [c.165]   
Лабораторная техника органической химии (1966) -- [ c.420 , c.422 ]




ПОИСК





Смотрите так же термины и статьи:

Противоточное распределение



© 2025 chem21.info Реклама на сайте