Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Индикаторы инертные

    Реактивы поливиниловый спирт, ацетангидрид, ацетат натрия, индикатор, инертный газ. [c.73]

    Для изучения путей движения газа в пласте используют различные инертные газы, отличные от компонентов остаточного пластового газа. В качестве инертных газообразных компонентов применяют азот, гелий, аргон, криптон, пропилен, бутилен и др. Эти компоненты закачивают в пласт вместе с газом через скважины, расположенные в сводовой части структуры. В периферийных скважинах периодически отбирают пробы газа на анализ и устанавливают время появления индикатора (инертного газа) в различных скважинах. Тем самым определяют направление и скорость перемещения закачиваемого газа в пористой среде. В некоторых случаях используют радиоактивные газообразные индикаторы, например криптон, ксенон. [c.495]


    В общем случае реакционная смесь содержит исходные вещества, вводимые в аппарат и принимающие участие в химическом превращении, и продукты, образующиеся в результате химического превращения (например, промежуточные и конечные — целевой, побочные, отходы). Исходные вещества и продукты будем называть реагентами. В реакционной смеси могут находиться также вещества, оказывающие влияние на ход превращений, но в конечном счете не претерпевающие изменений, т. е. катализаторы (в некоторых случаях называемые контактами, ингибиторами), и, кроме того, индикаторы (например, изотопные) и инертные вещества (инерты), не принимающие участия в реакции. Так как наличие этих компонентов в реакционной смеси необходимо учитывать, сте-хиометрические расчеты иногда несколько усложняются, [c.102]

    Предположим, что в начальный момент времени в первый аппарат быстро вводится <7о растворимого инертного индикатора и в дальнейшем индикатор больше не добавляется. Задача заключается в том, чтобы рассчитать его количества ( 1, <72 и т. д. в каждом аппарате в любой последующий момент времени 1. [c.90]

    Изложенная выше теория справедлива при импульсном вводе индикатора. Для случая разгрузки аппаратов, а также для случая непрерывного н длительного ввода индикатора теория несколько видоизменяется. Рассмотрим первый из последовательно соединенных аппаратов и допустим, что в нулевой момент времени происходит резкое изменение концентрации инертного вещества в поступающей жидкости. Предположим, что до нулевого момента времени концентрация была постоянна и равна 0, а затем она достигла нового постоянного значения с (одна из этих концентраций может быть равна нулю в зависимости от того, происходит ли в пулевой момент времени непрерывный ввод индикатора или разгрузка аппаратов). [c.94]

    Физико-химические методы установления точки эквивалентности в комплексонометрии. Различные физико-химические методы обычно используют для установления оптимальных условий титрования. Кроме того, с помощью физико-химических методов можно проводить определения элементов, для которых еще не найдены цветные индикаторы, а также определять несколько элементов в одном растворе без предварительного химического разделения. Потенциометрическое титрование комплексоном выполняют с помощью ионоселективных электродов или используют инертные электроды из благородных металлов (Р1, Аи), реаги- [c.244]

    Пусть / — количество инертного индикатора, смешивающегося с содержимым реактора, которое быстро подается на входе в нулевой момент, и сИ — та его часть, которая покидает реактор за интервал времени от I до + di. Величина / называется частотной функцией времени пребывания. Ниже будет показано, каким образом можно экспериментально определить функцию, не прибегая к какой-либо идеализации, касающейся характера работы рассматриваемого реактора. [c.96]


    Требуется исследовать характеристики непрерывно работающего реактора посредством измерения распределения времен пребывания. Для этой цели 2000 мг инертного индикатора быстро подмешивают к основному потоку реагирующей смеси, поступающей в реактор. Эти жидкости полностью взаимно растворимы. Концентрация индикатора в жидкости, выходящей из реактора в различные моменты после его введения, оказались следующими  [c.104]

    Основным экспериментальным методом исследования продольного перемешивания является метод изменения состава входного потока и изучение при этом изменений на выходе из аппарата. Обычно с этой целью во входной поток вводят инертное вещество (индикатор) и изучают изменение его концентрации в выходном потоке — отклик на входное возмущение. В теоретических работах рассмотрены три способа ввода индикатора, изложенные ниже. [c.101]

    Для исследования скорости и механизма диффузии в пленках (выяснения природы диффундирующих ионов, скорости диффузии и др.) применяют метод инертных индикаторов и метод радиоактивных изотопов (меченых атомов). [c.437]

    Другой широко распространенной группой детекторов, применяющихся во многих марках газовых хроматографов, являются детекторы, действие которых основано на измерении тока, з/ юат проходящего через ионизированный газ между двумя электродами. К этой группе относятся детекторы, в которых ионизация молекул может осуществляться под действием электрического разряда в вакууме либо в пламени при наличии электрического поля или под действием радиоактивного излучения. Наиболее распространен пламенно-ионизационный детектор. Работа его основана на том, что пламя чистого водорода почти не содержит ионов и поэтому обладает очень малой электропроводностью (фоновый ток порядка Ю А). При наличии газов или паров анализируемых веществ (за исключением СО, СО2, OS, Sj, H.jS, О2, Н2О, инертных газов) происходит ионизация пламени, возникают ионы и радикалы, электропроводность пламени резко возрастает (ток порядка 10- А), что и служит индикатором на присутствие в газе-носителе анализируемых веществ. Схема одного из пламенно-ионизационных детекторов приведена на рис. 38. Элюат смешивают с водородом и подают в сопло горелки, куда поступает очищенный воздух. Горение [c.93]

    КИСЛОТЫ и слабого основания б) иметь высокую диэлектрическую проницаемость, что способствует ионизации в) быть инертным по отношению ко всем веществам, находящимся в системе, в том числе к индикаторам г) легко поддаваться очистке. Приведенный ниже перечень рекомендуемых растворителей взят из монографии [9]. [c.70]

    Общие принципы работы с металлоорганическими соединениями. Перед употреблением растворитель следует высушить. Тетрагидрофураи (ТГФ) и эфир необходимо перегнать над алюмогидридом лития (рекомендуется установка для непрерывной перегонки с металлическим холодильником и трифенилметаном в качестве индикатора) и хранить в атмосфере инертного газа. Гексаметилтриамид фосфорной кислоты (гексаметилфосфотриамид, ГМФТА или гексаметапол) и амины высушивают перегонкой над гидридом кальция в атмосфере инертного газа и хранят над молекулярными ситами размером 3 А (3 -10 ° м). В про- [c.27]

    Для олефинов индикатор получен из гильсонита при экстрагировании 100 г последнего в аппарате Сокслета 200 мл хлороформа. После окончания экстракции хлороформ отгоняли на водяной бане, экстракт растворяли-в 40 мл бензола и асфальтены осаждали 500 мл петролейного эфира. Петролейный эфир отгоняют на водяной бане в токе инертного газа. [c.312]

    Если для исследования взят полимер, то его растворяют в растворителях, инертных по отношению к НС1 (спирт, диоксан). Перед добавлением реактива раствор формальдегида нейтрализуют 0,5 и. растворами кислоты и щелочи. Индикатором служит 1%-ный раствор бромфенола голубого в. спирте. Пробу альдегида отмеряют градуированной пипеткой с достаточно широким отверстием, чтобы ее можно было использовать для вязких смоляных растворов. [c.22]

    Скорость комплексообразования имеет большое значение в аналитической химии. Например, при прямом комплексонометрическом титровании реакция определяемого иона с титрантом (а также с индикатором) должна протекать практически мгновенно, иначе индикация конечной точки титрования существенно затрудняется. В некоторых случаях, наоборот, инертность комплексов является благоприятным фактором. Например, интенсивно окрашенные комплексы Со(Ш) с изомерными 1,2- и 2,1-нитрозонафтолами весьма инертны и не разрушаются даже в сильнокислых средах, в то время как аналогичные комплексы с Ni, Qi, Fe лабильны и быстро разрушаются при действии НС1. Это позволяет избирательно определять кобальт в присутствии указанных металлов. [c.151]

    II) в присутствии нейтрального красного, феносафранина, метилового красного или м-этоксихризоидина в качестве индикаторов. Одновременно в идентичных условиях проводят установление титра раствора соли хрома (II) титрованием точного количества соли уранила или бихромата калия, о необходимо делать каждый раз, если выполняется одиночное определение, или 2—3 раза в течение рабочего дня при серийных определениях в связи с тем, что титр растворов солей хрома (II) постоянно изменяется. Растворы солей хрома (II) хранят в атмосфере инертного газа и в сосудах из темного стекла. Ошибка определения достигает 1 % (отн.) [966]. [c.98]


    Г. А. Панченко [189] показал, что уран (III) в кислых растворах титруется иодом только до урана (IV). На этом основании им был предложен метод количественного определения урана. Анализируемый раствор восстанавливают амальгамой цинка в присутствии достаточного количества соляной кислоты в атмосфере инертного газа. К восстановленному раствору добавляют раствор иода в избытке, который затем оттитровывают раствором тиосульфата натрия в присутствии крахмала в качестве индикатора. При определении [c.101]

    Силикагель выпускается в виде зерен, иногда с цветным индикатором (голубой гель). К. С. — гранулированный осушитель представляет собой шарики из геля диаметром около 3 мм. Преимущества применения этого осушителя связаны с шарообразной формой гранул и полным отсутствием мелких пылевидных частичек. В начале использования степень высушивания силикагелем соответствует значению точки росы ниже —55 С. Если существует опасность проникновения воды в виде капель или тумана, то применяют силикагель в виде К. С. — гранулированного осушителя — 157 . Регенерацию проводят при температуре 200—250 °С. Силикагель с индикатором, который в конце работы осушителя (при относительной влажности 10%) изменяет свой цвет из голубого в светло-розовый, следует регенерировать при температуре не выше 180 °С. К. С. — гранулированный осушитель применяется при высушивании водорода, кислорода, азота, инертных газов, диоксида углерода, диоксида серы, углеводородов и их галогенпроизводных. Для осушки хлора и хлороводорода используют осушитель марки и " . Силикагель, а в еще большей степени оксид алюминия, способен поглощать помимо воды также другие пары, что в ряде случаев может явиться причиной понижения выхода продукта. [c.113]

    Наблюдение, сделанное Тасманом относительно устойчивости 3-фенилфталида при действии на него 0,1 н. раствора щелочи, позволяет поставить вопрос о хорошо известном поведении фенолфталеина в качестве индикатора. Инертность 3-фенилфталида к гидролизу, несовместимая с почти мгновенным гидролитическим раскрытием лактонного цикла фенолфталеина, может найти объяснение при рассмотрении механизма образования окрашенного [c.87]

    Создание инертной зоны. Сущность метода заключается в опережающей флегматизации взрывчатой смеси в коммуникациях, с тем чтобы не допустить распространения пламени из аппарата, в котором произошел взрыв, на другие аппараты данной технологической линии и таким образом предотвратить вторичные взрывы. Инертная зона создается флегматизирую-щим устройством, которое представляет собой автоматический быстродействующий огнетушитель, срабатывающий по сигналу индикатора взрыва. При этом освобождается выходное отверстие, и флегматизирующая смесь под давлением вытесняющего газа впрыскивается в защищаемый объем. При расчете такого -флегматизирующего устройства задача сводится к определению объема баллона и давления газа, необходимого для вытеснения флегматизирующего состава. Метод опережающей флегма- [c.177]

    Чтобы предотвратить распространение пламени от факела в технологическую аппаратуру и предотвратить в ней взрыв, факельную систему можно оснастить средствами флегматизации взрывчатой смеси. Для создания инертной зоны можно воспользоваться флегматизирующим устройством (рис. Х-7), представляющим собой автоматический быстродействующий огнетушитель, срабатывающий по сигналу индикатора пламени. Последний устанавливают на факельном стволе или на другом участке системы с таким расчетом, чтобы длина коммуникации от места установки датчика до места ввода флегматизирующего состава была достаточной для своевременного срабатывания флегматизирующего устройства, т. е. чтобы время распространения пламени на этом участке трубопровода было меньше времени срабатывания автоматической системы флегматизации. [c.224]

    Следует заметить, что приемлемый индикатор наряду с пренебрежимо малой диффузией относительно основного потока должен также характеризоваться химической инертностью, отсутствием адсорбции и т. д. на поверхности реактора. Тяжелая вода не является удовлетворительным веществом для изучения времен пребывания в живом организме, поскольку она участвует в обменных процесспх с тканями. [c.97]

    Для оценки перемешивания используют уравнения нестационарных материальных балансов в изотермических простых модельных системах для инертного вещества — индикатора. Учитывая, что Т = onst и Z/J = О, получим эти уравнения в следующем виде  [c.71]

    Выпускаемые рН-метры со стеклянными электродами с достаточно толстой стенкой шариков ( -0,1 мм) позволяют измерять с большой точностью [Н+] до pH 13, но при умеренных концентрациях ионов щелочных металлов. Эти рН-метры снабжены усилителями с большим коэффициентом усиления тока, что дает возможность непосредственно измерять pH раствора, не прибегая к компенсационному методу измерения с применением очень чувствительных индикаторов тока. Поэтому стеклянные индикаторные электроды широко используются в практике киглотно-основного титрования и в других областях потенциометрических измерений, а кроме того, и при неводном титровании. Далее, поскольку они химически инертны, могут быть непосредственно помещены в титруемый раствор при использовании их в качестве электрода сравнения. При этом увеличивается компактность гальванического элемента (исключается электролитический ключ). [c.61]

    Растворение к-т Льюиса в ионизирующих р-рителях приводит к росту концентрации катионов р-рителя (напр., SO3 -Ь HjO ИзО -Н HSO ). Основания же увеличивают концентрацию анионов р-рителя [напр., (СНз)зМ -ь Н О г ОН" -f (СНз)зМН ]. Поэтому нетрудно оттитровать К. и о. в ионизирующихся р-рителях, фиксируя точку эквивалентности индикатором илн электрохимически. К-ты Льюиса можно также оттитровать в инертных р-рителях, напр, удается оттитровать р-р ЗпСЦ в бензоле р-ром (СНз)зК в этом же р-рителе, используя тимоловый голубой в качестве индикатора. [c.394]

    Криптон Кг (лат. krypton, от греч. kryptos—скрытый). К.—элемент VIH группы 4-го периода периодич. системы Д. И. Менделеева, п. н. 36, атомная масса 83,80, инертный газ. Выделен из воздуха в 1898 г. Получен ряд соединений К. с фтором (KrF4), фенолом, хлороформом и др. В промышленности К. получают из воздуха, применяют К. в электровакуумной технике для заполнения ламп накаливания, рекламных трубок (белый цвет). Изотоп Кг используют как радиоактивный индикатор. [c.73]

    Наибольший интерес в практическом плане представляет глицинтимоловый синий (2.3 39) [517—521]. Этот комплексон образует комплексы преимущественно с катионами переходных и двухвалентных элементов побочных групп Периодической системы элементов Д. И. Менделеева и практически не взаимодействует с катионами, имеющими электронную конфигурацию типа инертного газа. Наиболее прочные комплексы образуются с палладием и медью. Однако устойчивость комплекса с палладием превышает оптимальное значение для успешного применения реагента в качестве металлиндикатора, и титрование с применением ЭДТА в связи с этим затруднено. В случае меди подобного блокирования не наблюдается, и применение индикатора (2.3.39) дает возможность избирательно определять этот катион [522, 523]. С уранил-ионом образуются комплексы иОгНзЬг в области рН = 4—4,4 (/(=0,8-10 ), комплексы с соотношением [и02+] [НзЬ2 ]= 1 2 при рН = 4,5—5,0. Комплексон [c.267]

    III) раствором бихромата калия с применением дифениламинсуль-фоновой кислоты в качестве индикатора. Титрование и само восстановление проводят в атмосфере инертного газа. Для получения более точных результатов вводят поправку на добавленное железо и индикатор. Определению не мешают фосфаты, арсенаты, висмут и малые количества нитратов. [c.102]

    Ход определения. Навеску полимера или сополимера со стиролом (0,2—0,3 г) помещают в мерную колбу емкостью 25 мл и растворяют в 15—20 мл диоксана. После растворения раствор доводят до метки диоксаном. 2 мл полученного раствора переносят в мерную колбу емкостью 10 мл, прибавляют 6 мл воды, 0,3 мл 0,33Л1 раствора А1С1з, две капли метилового красного и затем по каплям раствор Ы(СНз)40Н до перехода краски индикатора в желтый цвет. Затем доливают раствор до метки водой, взбалтывают и фильтруют в сухую посуду. 3 мл фильтрата помещают в электролизер, прибавляют 0,2—0,4 мл раствора Ы(СНз)40Н, аэрируют раствор током инертного газа и полярографируют, начиная от —1,4 В. Затем добавляют 0,2—0,3 мл стандартного раствора 2-метил-5-винилпиридина и после перемешивания током инертного газа полярографируют вторично. Содержание 2-метил-5-винилпиридина в полимере (х, %) рассчитывают по формуле [c.129]


Смотреть страницы где упоминается термин Индикаторы инертные: [c.351]    [c.90]    [c.140]    [c.434]    [c.15]    [c.581]    [c.554]    [c.697]    [c.284]    [c.10]    [c.194]    [c.81]   
Окисление металлов и сплавов (1965) -- [ c.231 ]




ПОИСК





Смотрите так же термины и статьи:

Инертный газ



© 2025 chem21.info Реклама на сайте