Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновский спектрофотометр

    Автоматический рентгеновский спектрофотометр Дау [c.153]

    Для проведения анализа необходимо было разработать и построить высоковакуумный рентгеновский спектрофотометр с изогнутым кристаллом (обычно кварцем с подходящим радиусом изгиба), который мог бы обеспечить достаточную интенсивность. Для регистрации применяли фотопластинку, время экспозиции менялось от 30 мин до 4 ч. Измерение поглощения проводили только для одной длины волны с каждой стороны края поглощения, причем была введена соответствующая поправка на расстояние от края до выбранных длин волн. Для определения [c.317]


    Для регистрации рентгеновского излучения применяют фотографический метод, но к его обычным недостаткам здесь добавляется еще необходимость работать с очень большими выдержками. Поэтому в настоящее Бремя все шире внедряются электрические методы регистрации излучения. Приемниками служат наполненные газом трубки-счетчики, в которых наступает кратковременный пробой или пролете каждого рентгеновского кванта, который ионизирует газ и снижает напряжение пробоя. Пересчетные радиотехнические приборы позволяют сосчитать число квантов, попадающих на счетчик. Поворотом кристалла или решетки осуществляют развертку спектра и одновременно автоматически измеряют и записывают интенсивность излучения, так же как это делается в регистрирующих спектрофотометрах. [c.347]

    Продукты коррозии, образовавшиеся на литейной N1—Мп бронзе в течение 403 сут экспозиции на глубине 1830 м, исследовались при помощи дифракции рентгеновских лучей методами спектрографии, инфракрасной спектрофотометрии и количественного химического анализа. Продукты коррозии состояли из хлористой меди СиСЬ-НаО, оксихлорида меди [Си2(ОН)зС1], металлической меди 35,98%, небольших количеств алюминия, железа, кремния и натрия хлор-ионов в виде С1 —0,91 %  [c.275]

    Принятые обозначения н.а.а. — нейтронно-активационный анализ а.а.с. — атомно-абсорбционная спектрофотометрия X — рентгеновская спектрометрия.  [c.152]

    Отметим, что при выводе основного закона светопоглощения не делалось никаких предположений ни о природе поглощающей среды, ни о характере поглощаемого излучения. Поэтому этот закон универсален. Он справедлив не только для спектрофотометрии, но и для других абсорбционных спектроскопических методов (атомно-абсорбционных, инфракрасных, рентгеновских). Поскольку связь между концентрацией и оптической плотностью прямо пропорциональна, то из всех возможных величин, характеризующих светопоглощение, именно оптическую плотность удобнее всего использовать в спектрофотометрии в качестве аналитического сигнала. [c.269]

    Для анализа сложных смесей часто объединяют устройства сепаратора и анализатора. Например, составляющие раствора разделяют в хроматографической колонке и регистрируют отдельные пики хроматограммы с помощью регистрирующего ультрафиолетового спектрофотометра. Другим стандартным устройством является объединение газового хроматографа с масс-спектрометром. Эта комбинация была усовершенствована добавлением многоцелевой ЭВМ. Можно надеяться, что в ближайшее время можно будет программировать анализ так, чтобы ЭВМ выдавала в отпечатанном виде химическую структуру отдельных веществ, выделенных из исходного образца. К эмиссионным спектральным приборам с непосредственной выдачей результатов (в ультрафиолетовой и рентгеновской областях спектра), масс-спектрометрам и газовым хроматографам можно подсоединять ЭВМ небольших размеров, которые преобразуют сигнал прибора непосредственно в процентный состав пробы. В состав новых приборов для исследования структуры, таких, как инфракрасные спектрометры и приборы для измерения дисперсии оптической активности, входят небольшие ЭВМ, которые представляют сигнал детектора в виде графиков стандартного типа. [c.539]


    Наиболее распространенные методики анализа пищевых продуктов [31, 32] включают использование таких методов, как тонкослойная хроматография, колоночная высокоэффективная жидкостная хроматография, газовая хроматография, атомно-абсорбционный и атомно-эмиссионный спектральный анализ, УФ-и ИК-спектроскопия, спектрофотометрия, масс-спектрометрия, ЯМР низкого разрешения, электрохимические методы (электрофорез, потенциометрия и др.). люминесцентный анализ (фосфоресценция и флуоресценция), рентгеновская флуоресценция, непрерывный анализ в потоке. [c.34]

    Условность этого деления видна хотя бы на примере методов, использующих различные участки электромагнитного спектра инфракрасная и рентгеновская спектрометрия включаются в группу физических методов, а фотометрия и спектрофотометрия, основанные на использовании видимой и ближней ультрафиолетовой области спектра, — в группу физико-химических. Связано это с тем, что в фотометрических методах обычно используют химические реакции образования поглощающих свет соединений. [c.8]

    В области оптических методов анализа имеется большой опыт создания спектрографов, микрофотометров и других приборов для эмиссионного спектрального анализа, включая квантометры, инфракрасных спектрофотометров, спектрофотометров для видимой и ультрафиолетовой части спектра, в том числе регистрирующих (СФ-8 и др.). Давно выпускаются газоанализаторы, особенно для контроля содержания метана в шахтах, но также и для других целей. Налаживается широкое производство хороших приборов для рентгенофлуоресцентного анализа и рентгеновского микроанализа. Есть вполне современные приборы для электрохимических методов анализа. [c.163]

    При действии на воду жесткого рентгеновского и у-излучения или электронов большой энергии образуются частицы нескольких типов Н2О Нз, НаОа, Н, ОН, Н3О+, eaq Существование гидратированного электрона было установлено спектроскопически [56]. Методами скоростной спектрофотометрии были определены скорости, с которыми гидратированный электрон взаимодействует с растворителем и многими веществами в растворе (главным образом, при 23 °С). Поскольку концентрация гидратированных электронов [c.165]

    Рентгеновское излучение проходит коллиматор, щель, монохроматор, разрядную камеру. В кожух камеры вмонтированы прозрачные к рентгеновскому излучению окна. За выходным окном находится сцин-тилляционный детектор. Линейный усилитель и одноканальный анализатор обрабатывают выходной сигнал до его выхода в интенсиметр. При этих измерениях определяется доля проходящего рентгеновского излучения. Для детального анализа продуктов разложения UFe в РЧ-плазме использовались следующие приборы профилометр — для измерения толщины поверхностных отложений, эрозии и коррозии стенок кварцевой разрядной камеры инфракрасный спектрофотометр — для идентификации соединений, возникающих в плазме и обнаруженных в налете на стенках разрядной камеры сканирующий электронный микроскоп для изучения полученных в плазме РЧ-разряда в UFe отложений на стенках дифрактометр рентгеновского излучения — для идентификации химических соединений в отложениях на стенках разрядной камеры электронный микроскоп для определения относительной кристалличности отложений ионный спектрометр в комбинации с масс-спектрометром — для идентификации химических элементов и их соединений в отложениях на стенках камеры. [c.509]

    Все приемы и методы анализа, в основе которых лежат явления испускания или поглощения инфракрасных, видимых, ультрафиолетовых, рентгеновских лучей анализируемым веществом или продуктами его реакции (колориметрия, турбидиметрия, нефелометрия, спектрофотометрия, поляриметрия, рефрактометрия и др.), называются оптическими методами анализа. [c.7]

    Комплексон III используют [824] для устранения мешающего влияния Сп +, Fe +, и других элементов при определении селена (IV) в теллуре методом абсорбционной спектрофотометрии и рентгеновской флуориметрии. [c.313]

    Во всяком случае, сейчас кажется необходимым основательно знакомить всех студентов-химиков с общей методологией анализа и важнейшими современными методами, включая физические и хроматографические. Видимо, пора уже перестать понимать под физико-химическими методами анализа только оптические (преимущественно спектрофотометрию в видимой и ультрафиолетовой областях) и электрохимические методы. Каждый студент-химик должен получить представление о газовой хроматографии, атомно-эмиссионном анализе или масс-спектрометрии, и не где-нибудь, а при изучении общего курса аналитической химии. Это нелегкая задача по ряду причин не хватает приборов, соответствующим образом подготовленных преподавателей методов много, а время всегда ограничено считают, что, скажем, ядерно-физические или рентгеновские методы анализа далеки от химии довлеет груз традиций и т. д. Тем не менее данную задачу нужно решать альтернативы здесь, кажется, нет. [c.595]


    Луч А идет в рентгеновский спектрометр (если на его пути нет ни одного образца) илп в рентгеновский спектрофотометр (если образец помещен в одном из двух показанных положений). Луч В идет в рентгеновский спе ктрограф [c.138]

    Высокая концентрация активных частиц создается мощным импульсом рентгеновских лучей нлиэлектро-нов. Импульс должен иметь энергию не менее 100 Дж и длиться не более 50 мкс. Обычно используется линейный ускоритель электронов. За кинетикой расходования следят методом скоростной спектрофотометрии. Метод используют для изучения реакций свободных радикалов, сольватированного электрона. [c.293]

    Оптическими называют те методы физико-химического анализа, в основе которых лежит явление испускания или поглощения инфракрасных, видимых, ультрафиолетовых, рентгеновских лучей анализируемыми веществами или продуктами их реакций. Сюда относятся колориметрия, нефелометрия, флуорометрия, спектрофотометрия, по-ляриметрия, рефрактометрия и др. [c.6]

    Продукты коррозии некоторых сталей исследовали методами дифракции рентгеновских лучей, спектрографического анализа, количественного химического анализа и инфракрасной спектрофотометрии. В продуктах коррозии были найдены РеаОз Ре(ОН)з FeOOH и FeaOa-HjO, а также значительные количества хлор-, сульфат- и фосфат-ионов. [c.248]

    Продукты коррозии, взятые из одного коррозионного туннеля в нержавеющей стали A1S1 430, анализировались прн помощи дифракции рентгеновских лучей, методами спектрографического анализа, количественного химического анализа и инфракрасной спектрофотометрии. В продуктах коррозии обнаружили аморфный оксид железа РегОз-ХНаО, Fe, Сг, Мп, Si, следы Ni, 1,41J% хлор-ионов, 2,12% сульфат-ионов и значительное количество фосфат-ионов. [c.335]

    Продукты коррозии сплава 7079-Тб исследовались при помощи дифракции рентгеновских лучей, спектрографическим анализом, количественным химическим анализом и методом инфракрасной спектрофотометрии. Качественные результаты по составу продуктов коррозии таковы аморфные соединения А Оз-ХНгО, Na l, Al металлический, Al, u, Mg, Мп, Zn, Na, a, следы Ti и Ni, 2,82 % хлор-ионов, 16,7 % сульфат-ионов и значительное количество фосфат-ионов. [c.391]

    СПЕКТРАЛЬНЫЙ АНАЛИЗ, метод качеств, и количеств, определения состава в-в, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Различают атомный и молекулярный С. а., задачи к-рых состоят в определении соота. элементного и молекулярного состава в-ва. Эмиссионбый С. а. проводят по спектрам испускания атомов, ионои или молекул, возбужденных разл. способами, абсорбционный С. а.-по спектрам поглощения электромагн. излучения аиализнруем1>1ми объектами (см. Абсорбционная спектроскопия). В зависимости от цели исследования, св-в анализируемо о в-ва, специфики используемых спектров, области длин волн и др. факторов ход анализа, аппаратура, способы измерения спектров и метрологич. характеристики результатов сильно различаются. В соответствии с этим С. а. подразделяют на ряд самостоят. методов (см., в частности, Ато.мно-абсорбционный анализ. Атомно-флуоресцентный анализ, Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия, Люминесцентный анализ. Молекулярная оптическая спектроскопия. Спектроскопия отражения, Спектрофотометрия, Ультрафиолетовая спектроскопия, Фотометрический анализ, Фурье-спектроскопия, Рентгеновская спектроскопия). [c.392]

    По диапазону длин волн (или частот) электромагн. излучения выделяют радиоспектроскопию, микроволновую спектроскопию, оптическую С. (см. Инфракрасная спектроскопия. Молекулярная оптическая спектроскопия. Ультрафиолетовая спектроскопия), рентгеновскую спектроскопию и гамма-спектроскопию (см. Мёссбауэровская спектроскопия. Гамма-абсорбционный аиализ). Оптическую С. на практике иногда отождествляют со спектрофотометрией. В каждом разделе С. используются свои приборы для получения, регистрации и измерения спектров. В соответствии с различием конкретных эксперим. методов выделяют спец. разделы С., напр. Фурье-спектроскопия, лазерная спектроскопия. [c.394]

    Кинетика расходования исходного вещества рН-статический метод Спектрофотометр ия Ториметрическое титрование Хемилюминесцентный метод Импульсный радиолиз под воздействием рентгеновских лучей Метод фотолиза [c.348]

    Абсорбционные спектрометры. Однолучевой абсорбционный спектрометр применяется практически во всех абсорбционных спектрометрических системах, будь то спектрометры для ультрафиолетового, видимого и инфракрасного диапазонов спектра, атомно-абсорб1щонные спектрофотометры или же рентгеновские абсорбционные спектрометры (рис. 11.9). Источники и приемники света должны быть подходящими для данного аналитического метода и должны быть согласованы между собой в спектральном отношении. [c.216]

    Наиболее подробно изучались и разрабатывались методики определения в нефтях ванадия. Для этой цели применялись метод рентгеновской флуоресценции с предварительным концентрированием ванадия (а также никеля и железа) с дитио-карбаматом метод газожидкостной хроматографии (до 0,1 м на 1 г нефти) с пламенно-ионизационным детектором хелатов оксида ванадия с фторированными дикетона-ми (с одновременным определением меди и никеля), а также хелатов ванадия (III) и различных фторированных дикетонов метод спектрофотометрии в видимом свете (на волне 500 нм) метод атомно-абсорбционной спектроскопии пирокатехиповый метод каталитический метод, основанный на спектрофотометрическом определении продукта реакции окисления галловой кислоты бромат-ионом, катализируемой ионами ванадия (другие элементы, присутствующие в нефтях, не мешают определению ванадия этим методом). [c.85]

    Осн. метод У. а. биол. объектов — спектрофотометрия в сочетании с хроматографич. или электрофоретич. разделением анализируемых в-в (вплоть до отд. клетки). Все шире в У. а. применяют физ. методы, прежде всего атомно-флуо-ресцентный и атомно-абсорбционный анализ, рентгеновскую спектроскопию, а также методы локального анализа. [c.604]

    При замедлении электронов в мишени образуется целый спектр фотонов различных энергий. Рентгеновский спектр является непрерывным, начинается с предельно высокой частоты, определяемой уравнением (2), и простирается к более низким частотам с постепенно убывающей интенсивностью. Средняя энергия излучения может быть принята равной приблизительно половине величины Ьыша, получаемой по уравнению (2). На фоне этого непрерывного спектра наблюдаются отдельные пики значительно большей интенсивности. Эти пики, наблюдаемые лишь при более высоких напряжениях, отвечают электронным переходам между внутренними уровнями электронных оболочек атомов мишени. Рентгеновский спектр анализируют обычно, направляя излучение на кристалл (например, на кристалл хлористого натрия), который действует подобно диффракционной решетке спектрофотометра, работающего в области ультрафиолетового или видимого света. Более длинные волны рассеиваются кристаллом под большими углами 0 согласно уравнению Брегга  [c.19]

    Из спектроскопических методов особое место призваны занять методы атомной абсорбции, рентгеновской флуоресценции, масс-спектрометрии на вооружении сохранятся эмиссионный спектральный анализ и спектрофотометрия. Атомно-абсорбционный метод станет одним из наиболее распространенных и важных. Будут созданы атомно-абсорбционные квантометры, прецизионные спектрофотометры, разработаны методы анализа твердых проб. Лазеры, в частности с плавно изменяющейся длиной волны, будут применяться в инфракрасной и электронной спектроскопии, для спектрофотометрического и люминесцентного анализа. Можно предполагать разработку высокочувствительных и точных методов молекулярного анализа с использованием микроволновой и ра-диоволновой спектроскопии. В люминесцентном анализе расширится использование низких и сверхнизких температур для повышения чувствительности и точности анализа. [c.238]

    Спектрографы рентгеновские, см. рентгеноспектральный анализ (аппаратура) Спектродензограф, применение для прямых измерений оптич. плотности 1960 Спектроскопия микроволновая и анализ газов 3571 Спектрофон 2074, 2Ю8 Спектрофотометрия 812, 1327, 1330, 1331, 1334—1339, 1342, 1345—1349, 1356, 1357, 1363. 1369—1376 см. также спек-тральн. анализ молекулярный Спектрофотометры для ИК области спектра 1920, 1925, 1938, 1941, 1945, 1970 для УФ и видимой области спектра 1921, 1924, 1957, 1958. 1999 Спектр . комбинационного рассеяния, аппаратура для анализа 2032—2038 поглощения инфракрасные при анализе жидкого топлива 7461 [c.388]

    Источниками возбуждения могут быть свет (фотолюминесценция), химические реакции (хемилюминесценция), рентгеновские лучи (рентгенолюминесценция) и др. (табл, 1П.13). В экологической аналитической химии чаще всего используют анализ, основанный на фотолюминесценции исследуемого вещества или хемилюминесценции. В первом случае используют фотолюминесценцию, возбуждаемую УФ-излучением, источником которого служат ртутно-кварцевые или ксеноновые лампы и лазеры. Регистрируют люминесценцию фотоэлектрически (с помощью спектрофотометра — флуориметра). Качественный анализ (по спектру люминесценции) особенно часто используют для обнаружения полициклических ароматических углеводородов (ПАУ). Количественный анализ основан на зависимости интенсивности люминесценции от количества лю-минесцирующего вещества (см. закон Бугера—Ламберта—Бера, раздел 3.1). [c.276]

    Для изучения свойств полимерных люлекул и их равновесий в водных растворах применяли самые разнообразные методы кислотно-основное титрование, криоскопию, спектрофотометрию, термометрическое титрование, измерение диффузии и ионного обмена, ультрацентрифугирование, светорассеяние, спектры комбинационного рассеяния и дифракцию рентгеновских лучей. Выводы, основанные на измерении скорости диффузии (им придавали большое значение в ранней литературе), по-видимому, малодостоверны, так как при интерпретации опытных данных были использованы необосно- [c.365]

    Выполнено рентгеновское исследование полученных кристаллических соединений (условия см. в [1]) и в табл. 2 приведены значения межплоскостных расстояний и относительных интенсивностей отражения. ИК-спектры твердых комплексов получены на инфракрасном спектрофотометре иК-20 Б области 400—4000 см . Образцы готовили суспензировани-ем комплексов в вазелиновом маеле и гексахлорбутадиене- [c.28]


Смотреть страницы где упоминается термин Рентгеновский спектрофотометр: [c.449]    [c.126]    [c.711]    [c.712]    [c.99]    [c.96]    [c.920]   
Применение поглощения и испускания рентгеновских лучей (1964) -- [ c.138 ]




ПОИСК





Смотрите так же термины и статьи:

Спектрофотометр

Спектрофотометрия



© 2025 chem21.info Реклама на сайте