Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

УДФ-глюкоза биохимическая роль

    Преобладающая биохимическая роль глюкозы невольно заставляет задуматься над вопросом что это — простая случайность, необъяснимый каприз природы Глубокое изучение стереохимии углеводов позволило понять причины того, что именно глюкозе принадлежит ведущая роль. Дело в том, что молекулы гексоз имеют не плоские, а трехмерные шестичленные циклы подобно циклогексану, кольцо имеет форму кресла. При этом заместители могут занимать аксиальное положение или (более выгодное) экваториальное положение. Конфигурация асимметрических центров глюкозы такова, [c.302]


    Такое пространственное строение глюкозы и определяет ее предпочтительную биохимическую роль глюкоза — термодинамически наиболее выгодный, а поэтому самый устойчивый моносахарид. [c.303]

    В оценке биохимической роли углеводов в последние десятилетия произошли серьезные изменения. Если раньше углеводы рассматривали лишь как источники энергии для животных организмов (глюкоза гликоген как резервное вещество) и пассивный строительный материал для создания остова растительных клеток (клетчатка), то в настоящее время знают о многих других функциях углеводов. [c.304]

    На рис. 21-21 показано строение молекулы аденозинтрифосфата (АТФ), играющего ключевую роль в биохимическом процессе запасания энергии. Эта молекула построена из аденина (см. рис. 21-3), рибозы (моносахарид с пятью атомами углерода) и трех связанных в цепочку фосфатных групп. Концевая фосфатная группа в АТФ может гидролизоваться, или отщепляться, с присоединением к продуктам ионов ОН и Н от воды, в результате чего образуются ортофосфорная кислота и аденозиндифосфат (АДФ). Далее АДФ может снова разлагаться с образованием еще одной фосфатной группы и аденозинмонофосфата (АМФ). Наконец, отщепление последней фосфатной группы приводит к образованию аденозина. При отщеплении каждой из первых двух фосфатных групп высвобождается свободная энергия 30,5 кДж моль а при отщеплении третьей-только 8 кДж моль" Именно АТФ, а точнее его первая фосфатная связь (крайняя слева на рисунке) является главным местом запасания энергии в любой живой клетке. Каждый раз, когда молекула глюкозы биохимиче- [c.327]

    В печени гликоген играет роль буфера глюкозы, циркулирующей в крови и являющейся главным энергетическим ресурсом всех клеток организма. Концентрация глюкозы Б плазме крови должна поддерживаться постоянной падение ее ниже нормы приводит к голоданию клеток и оказывается гибельным для тех из них, которые неспособны создавать собственные энергетические резервы (каковы, например, клетки головного мозга), а превышение ведет к резким биохимическим сдвигам в клетках, и также особенно опасно для клеток мозга. Между тем и расходование глюкозы плазмы, и ее поступление подвержены резким колебаниям, Например, при переходе от покоя к активной деятельности убыль глюкозы скачкообразно возрастает, а при переваривании пищи, особенно углеводной, в кровь быстро поступают значительные количества глюкозы. Таким образом, понятно, что организм должен располагать быстродействующими и легко управляемыми механизмами биосинтеза гликогена (депонирование избыточной глюкозы плазмы) и его расщепления (компенсация энергетических затрат). На примере расщепления гликогена удобно проследить связь его структуры с выполняемой функцией. [c.143]


    Пировиноградная кислота является узловым продуктом и в так называемом цикле Кребса., играющем огромную роль в обмене веществ в растительных и животных организмах. Посредством отдельных звеньев этого цикла строятся такие биохимически важные кислоты, как лимонная, кетоглутаровая, янтарная, фумаровая, яблочная. Полный цикл — это цикл клеточного дыхания животных и растений, приводящий к окислению 1 моль пировиноградной кислоты (в свою очередь образующейся из глюкозы) в 3 моль СО2 и 2 моль Н2О. [c.465]

    Углеводы являются чрезвычайно важным классом природных соединений. Исследование их химических свойств может дать ценную информацию о механизмах реакций и стереохимии. Значительным достижением в настоящее время является применение углеводов в качестве хиральных синтонов и заготовок для стерео-специфического синтеза таких соединений, как простагландины, аминокислоты, гетероциклические производные, липиды и т. д. Для биолога значение углеводов заключается в доминирующей роли, которая отводится им в живых организмах, и в сложности их функций. Углеводы участвуют в большинстве биохимических процессов в виде макромолекулярных частиц, хотя во многих биологических жидкостях содержатся моно- и дисахариды, а большинство растений содержит глюкозу, фруктозу и сахарозу. Только растения способны осуществлять полный синтез углеводов посредством фотосинтеза, в процессе которого атмосферный диоксид углерода превращается в углеводы, причем в качестве источника энергии используется свет (см. гл. 28.2). В результате этого накапливается огромное количество гомополисахаридов — целлюлозы (структурный материал) и крахмала (запасной питательный материал). Некоторые растения, в особенности сахарный тростник и сахарная свекла, накапливают относительно большие количества уникального дисахарида сахарозы (а-О-глюкопиранозил-р-О-фруктофуранозида), который выделяют в значительных количествах (82-10 т в год). Сахароза — наиболее дешевое, доступное, Чистое органическое вещество, запасы которого (в отличие от запасов нефти и продуктов ее переработки) можно восполнять. -Глюкоза известна уже в течение нескольких веков из-за ее способности кристаллизоваться из засахаривающегося меда и винного сусла. В промышленном масштабе ее получают гидролизом крахмала, причем в настоящее время применяют непрерывную Схему с использованием ферментов, иммобилизованных на твердом полимерном носителе. [c.127]

Рис. 3-11. Первичные биомолекулы, играющие роль основных строительных блоков, представляют собой как бы буквы биохимического алфавита. На этом рисунке показаны 20 аминокислот (А), из которых построены белки всех организмов, пять азотистых оснований и два пятиуглеродных сахара (Б), входящих в состав всех нуклеиновых кислот, основные строительные блоки липидов (В) и а-О-глюкоза (Г) - родоначальник большинства углеводов. Рис. 3-11. Первичные биомолекулы, играющие роль <a href="/info/1715351">основных строительных</a> блоков, представляют <a href="/info/1795776">собой</a> как бы буквы биохимического алфавита. На этом рисунке показаны 20 аминокислот (А), из <a href="/info/1780163">которых построены</a> белки всех организмов, пять <a href="/info/70316">азотистых оснований</a> и два пятиуглеродных сахара (Б), входящих в состав всех <a href="/info/548">нуклеиновых кислот</a>, основные <a href="/info/100881">строительные блоки липидов</a> (В) и а-О-глюкоза (Г) - родоначальник большинства углеводов.
    Поскольку биохимический анализ различных компонентов в крови и моче позволяет оценивать особенности метаболизма, его успешно используют как при диагностике заболеваний, вызванных нарушением обмена веществ, так и в ходе их лечения. Наиболее ярким примером служит сахарный диабет-заболевание, обусловленное недостаточностью секреции или эффективности действия инсулина (гормона поджелудочной железы) и приводящее к глубоким нарушениям обмена веществ. В США сахарный диабет в качестве причины смертности занимает третье место. Он довольно широко распространен почти у 5% населения США выявляется определенная степень нарушения обмена глюкозы, свидетельствующая о наличии диабета или тенденции к его развитию. Сахарный диабет-это по существу группа заболеваний, выражающихся в нарушении регуляторной активности инсулина, которое может быть обусловлено разными причинами. Более того, на обмен глюкозы могут оказывать воздействие и другие гормоны. Возникновение диабета обусловлено в какой-то мере генетическими причинами не исключено, однако, что помимо этого определенную роль может играть и вирусная инфекция. Существует диабет двух основных типов начинающийся в юности и начинающийся во взрослом состоянии. В первом случае болезнь проявляется в раннем возрасте и быстро переходит в тяжелую форму. Во втором случае заболевание развивается медленно, протекает стерто и часто вообще остается незамеченным. Диабет, начинающийся в юности, лечат инъекциями инсулина при этом на протяжении всей жизни больного необходимо тщательно следить за балансом между потреблением глюкозы и дозой вводимого инсулина. Для диагностики и лечения диабета, который вызывает серьезные нарушения обмена веществ, очень важны биохимические анализы крови и мочи (табл. 24-6). [c.772]


    Всего лишь 40 лет назад мысль о том, что ген можно включать или выключать, казалась абсурдной. Гипотеза, сыгравшая такую важную роль в понимании работы клеток, была выдвинута на основании изучения Е. соИ, растушей на смеси глюкозы и лактозы (дисахарид). Если бактерии предоставляли выбор источника углерода, она сначала использовала всю глюкозу и лишь затем начинала метаболизировать лактозу. Переключение на лактозу сопровождалось остановкой роста, в течение которой синтезировался фермент Р-галактозидаза, гидролизирующий лактозу до глюкозы и галактозы. Выделение и характеристика мутантных бактерий, обладающих определенными дефектами в регуляции такого переключения, дало толчок биохимическим исследованиям, которые в 1966 г. привели к идентификации и вьщелению белка-репрессора лактозного оперона. [c.183]

    Исключительно важна роль тиамина в обмене веществ всех живых организмов. Тиамин функционирует в живых организмах как необходимый кофермент в метаболизме белков, углеводов и жиров при выработке энергии. Он входит в состав двух групп ферментов - карбоксилаз и дегидрогеназ - цикла трикарбоновых кислот. В составе фермента транскетолазы пентозофосфатного пути участвует в переносе активных альдегидных групп, окисляя глюкозу. Образующиеся только в этих биохимических реакциях, пентозы идут на синтез ДНК [c.99]

    Решающую роль в стереоспецифичности биохимических процессов играет наличие в живом организме пространственно избирательных катализаторов — ферментов. Так, например, избирательность ферментов, вызывающих брожение, проявляется в том, что только эпимерные сахара — глюкоза, манноза (и отвечающая им кетогексоза — фруктоза) способны к брожению. [c.654]

    Глюкоза и другие моносахариды, получаемые в результате гйдролиза природных полисахаридов (целлюлозы, гемицеллюлоз, крахмала) являются важнейшими компонентами питания человека, животных и микроорганизмов и служат дешевым источником сахаров для удовлетворения постоянно возрастающей потребности в сырье пищевой, микробиологической, медицинской и химической отраслей промышленности Из глюкозы с помощью разнообразных химических, ферментативных и микробиологических процессов получают белковые и ферментные препараты, фруктозу и другие сахаристые вещества, аминокислоты, органические соединения разных классов, в том числе кислоты, спирты, антибиотики, важнейшие мономеры и т д Очевидно, что развитие химической и биохимической технологии приведет к значительному расширению ассортимента полезных продуктов С проблемой гидролиза полисахаридов тесно связана разработка новых подходов к биоконверсии энергии, поскольку гидролитическая стадия играет важную роль в получении газообразного топлива (биогаза) из растительной биомассы Особенно важной представляется возможность получения из глюкозы этанола с целью его использования в качестве топлива (или добавки к традиционному жидкому топливу) для двигателей внутреннего сгорания [c.4]

    Участие фосфатов моносахаридов в биохимических процессах. Один из важных метаболических процессов.— гликолиз — начинается с реакции фосфорилиро-вания глюкозы с помощью АТФ в присутствий фермента глюкокиназы, обеспечивающего избирательное взаимодействие с участием только первичноспиртовой группы. При этом происходит нуклеофильное замещение у атома фосфора с образованием хорошо уходящей группы, в роли которой выступает молекула АДФ. [c.398]

    Гидроксикислоты содержат в молекуле функциональные группы двух типов-гидроксильную и карбоксильную. В зависимости от положения первой относительно второй различают а-, Р-, у-и 5-гидроксикислоты. Простейшая-гликолевая (гидроксиуксус-ная) кислота является а-гидроксикислотой. Она встречается во многих растениях (виноград, свекла). Молочная (а-гидроксипро-пионовая) кислота - продукт жизнедеятельности ряда бактерий ее используют в качестве консервирующего средства. Молочная кислота накапливается в мышцах как продукт усвоения глюкозы. Во многих плодах найдены яблочная (гидроксиянтарная) и винная (дигидроксиянтарная) кислоты. Некоторые гидроксикислоты играют важную роль в биохимических процессах. [c.433]

    Вторым коферментом, близким по строению НАД, является никотинамидадениндинуклеотидфосфат (НАДФ) (XXX), который отличается от НАД лишь наличием фосфорного остатка у С-2 о-рибозы, присоединенной к молекуле аденина. Несмотря на то что НАД и НАДФ близки по строению, эти коферменты не заменяют друг друга, и их роль в биохимических процессах различна 21]. В то время как НАД специфичен для таких дегидрогеназ, действие которых связано с обычной передачей электронов к кислороду в процессе дыхания, НАДФ специфичен для дегидрогеназ, действие которых относится к области биосинтетических восстановлений, например, при образовании глюкозы в процессе темной фазы фотосинтеза Г2Г [c.329]

    В заключение необходимо отметить роль, которую никотинаденинди-нуклеотид (НАД) играет в живых системах. Это один из наиболее важных коферментов. Он регулирует не только содержание этанола, но и другие окислительно-восстановительные процессы в организме. Среди важнейших биохимических процессов, в которых участвует НАД , можно назвать процесс ферментативного расщепления глюкозы и сопряженное с ним превращение лимонной кислоты, регулирующее клеточное дыхание. [c.56]

    Указывают, что биохимические процессы не идут в гомогенных водных растворах, так как активный энзим нельзя отделить от всей коллоидальной молекулы протеина, и что окисляющийся субстрат должен сперва адсорбироваться на поверхности коллоида и подойти совершенно точно, как ключ к замку, к специфическим простетическим группам. В таком случае оказывается возможным аккумулирование теплоты реакции, выделяющейся в отдельных стадиях реакции, на каталитически активных центрах в достаточном количестве, обеспечивающем протек(ание эндотермических изменений, которые являются отдельными составляющими суммарного экзотермического процесса. Так, например, по данным Кребса , биохимический синтез мочевины, включающий превращение орнитина в аргинин, обязательно увеличивает энергию примерно на 14 ккал на г-молекулу. Этот эндотермический процесс может итти только вместе с экзотермическим окислением. Поскольку синтез аргинина ускоряется в присутствии таких веществ, как глюкоза, фруктоза, молочная кислота и пировиноградная кислота, предполагается, что одновременное окисление этих веществ дает энергию для синтеза мочевины. Существенную роль в регулировании изменений энергии при ступенчатом окислении сахаров могут играть реакции фосфорилирования и дефосфорилирования На стр. 297 было указано, что фосфорилирование может сопровождать де-карбоксилирование. При последующем гидролизе смешанного ацилфосфорного ангидрида может освобождаться не менее [c.301]

    Суммарное изучение изменений гликогена различных органов не отражает истинной картины физиологических процессов, протекающих в организме. Рядом исследователей [1—31 было показано, что отдельные фракции гликогена отличаются одна от другой количественным содержанием, структурой, способностью давать более или менее прочные комплексы с белками и липоидами. Известно, что при различных функциональных состояниях организма наиболее значительно изменяется количественное содержание гликогена за счет свободной фракции [4—6]. Однако физиологическая роль отдельных фракций изучена недостаточно. Было обнаружено, что при скармливании крысам меченой глюкозы наблюдается достаточно быстрое включение С в десмогликоген печени, что, по-видимому, указывает на биохимическую активность этой фракции [7]. [c.151]

    Тропонин — Са -связующий регуляторный белок миофибрилл. Связан с актином, блокирует центры контакта актина с миозином. Убихинон (кофермент О) — небелковый компонент дыхательной цепи, который участвует в передаче электронов и протонов на цитохромы. По строению близок к витамину К. Углеводы (СдН О ) — класс органических веществ, состоящих из атомов С, Н и О. В организме выполняют энергетическую роль, обеспечивая более 50 % потребностей в энергии. Основные представители — глюкоза, фруктоза, рибоза, дизоксирибоза, гликоген. Ферменты-энзимы — биологически активные белки, синтезируемые в организме и выполняющие роль катализаторов биохимических реакций. [c.493]

    Способность выполнения ряда специфических функций, возникшая в процессе длительной эволюции нервной системы, отразилась также на формировании ее особого химического состава и определенной специфики метаболизма. Здесь можно отметить и высокую концентрацию в нервной ткани липидных веществ, в частности липопротеидных и липонуклео-протеидных надмолекулярных комплексов и огромные скорости протекания метаболических процессов и исключительную интенсивность потребления энергии и связанное с этой особешюстью весьма эффективное использование ряда аминокислот в качестве источников энергии и исключительное развитие биохимических аппаратов образования аминокислот из глюкозы и наличие множества альтернативных путей превращения веществ, выполняющих в деятельности нервной системы особо важную роль и развитые механизмы пространственного разобщения метаболитов, отличающихся по обменной активности и необычные механизмы транспорта биологически важных веществ но отросткам нейронов на периферию клетки и специфическую локализацию в нервной ткани таких соединений, как протеолипиды, некоторые виды ганглиозидов, ГАМК, К-ацетил-Ь-аспарагиновая кислота и др. и высокую активность био- [c.19]

    Нуклеотиды принимают участие во множестве биохимических процессов. Пожалуй, наиболее известна роль пуриновых и пиримидиновых нуклеотидов в качестве мономеров-предшественников при биосинтезе РНК и ДНК. Помимо этого пуриновые рибонуклеотиды выполняют функции универсальных источников энергии (например, АТР), регуляторных сигналов (сАМР, GMP), входят в состав ко-ферментов (FAD, NAD, NADP) и служат переносчиками метильных групп (S-аденозилметионин) пиримидиновые нуклеотиды функционируют в качестве макроэргических интермедиатов в углеводном обмене (UDP-глюкоза, UDP-галактоза) и в синтезе липидов ( DP-ацилглицерол). [c.5]

    В различных биохимических процессах, протекающих в организмах, глкжоэа используется как источник энергии, так и в качеотве материала для построения более сложных органических соединений жиров, масла, целлюлозы. Азот, фосфор, сера, магний, соединяясь о элементами глюкозы,образуют бел1И, пигменты, нуклеиновые кислоты и т.д. Особую роль в фотосинтезе играл вода, количество которой в процессе должно быть в сотни раз больше, чем по реакции. В тканях растений вода служит средой, в которой должны быть растворены питательные вещества, для того, чтобы они стали доступными растениям. Таким образом.в создании биологической продукции участвует много реакций, в общем виде которые можно свести к следующему уравнению  [c.36]

    Надо поставить вопрос что же — все эти отдельно взятые соединения во 1 сей совокупности своей являются организаторами, эвокаторами роста добавочных конечностей у аксолотлей или, быть может, только некоторые нз них играют доминантную роль в этом биологическом процессе По-видимому, последнее имеет здесь место, и это должно, думается мне, относиться главным образом к глюкозе и ее ближайшим производным — глюкоза-мину и глюкуроповой кислоте. Делаю такое предположение, так как в медицине часто применяется введение в организм в значительных количествах глюкозы, стимулирующей и биохимический обмен в организме. Нужно ставить новые опыты для суждения о том, можно ли введением под кожу аксолотлю тех или других иродуктов распада хряща вызвать добавочные новообразования. [c.415]

    Существенную роль сыграла также доступность полосок индикаторной глюкозооксидазной бумаги для определения глюкбзы в капиллярной крови. Поскольку подкожное введение инсулина при диабете представляется весьма неудовлетворительных средством, знание уровня глюкозы в крови пациента как дома, так и в больничной палате очень полезно и для него, и для врача. Капиллярную кровь нетрудно отбирать из пальца. Широкое и вполне успешное применение данного метода [11] открыло клиницистам глаза на возможности мгновенных биохимических анализов и привело к осознанию потребности в еще более удобных и надежных в работе системах для определения глюкозы в крови. [c.569]


Смотреть страницы где упоминается термин УДФ-глюкоза биохимическая роль: [c.83]    [c.21]    [c.140]    [c.163]    [c.37]    [c.12]    [c.95]   
Химия нуклеозидов и нуклеотидов (1966) -- [ c.202 ]




ПОИСК







© 2024 chem21.info Реклама на сайте