Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фториды неорганические

    Фториды неорганические плохо растворимые [c.1072]

    Фторирование углеводородов осуществлялось несколькими путями. Их можно классифицировать следующим образом а) реакция с элементарным фтором б) реакция с фторидом металла в) электролиз в безводном фтористом водороде г) реакция с хлором (или бромом) с последующим обменом галоида в результате взаимодействия с неорганическим фторидом или фтористым водородом. [c.68]


    Практический вывод из этих фактов состоит в том, что для катионов средних размеров гидросульфаты являются не только хорошим исходным материалом для приготовления многих -ониевых солей, но также и очень полезными МФ-катализато-рами. Добавление 1 мол. экв. гидроксида натрия превратит анион гидросульфата в нейтральный сульфат, который не может мешать, так как он экстрагируется труднее почти всех других органических и неорганических анионов. Кроме гидросульфата удобно использовать хлориды. Более гидрофильные четвертичные аммониевые соли с такими анионами, как ацетат, фторид или гидроксид, трудно приготовить они сильно гигроскопичны и/или нестабильны. [c.32]

    Соединения фтора часто получают не прямым фторированием, а действием неорганических фторидов на хлоралканы, альдегиды (кетоны) и кислоты  [c.181]

    Небольшое пояснение требуется для параметров фторидов и хлоридов. Недавно было найдено что теплоты растворения НР, принимавшиеся в прежних работах, существенно отличаются от действительных. Это приводит к необходимости пересчета тех значений теплот образования фторидов, которые по методу экспериментального определения зависели от теплоты растворения НР. Изменение в таких случаях может быть значительным, достигая, например, для тетрафторидов 3—7 ккал/моль. Можно думать, что в недалеком будущем выйдет сводка согласованных значений теплот образования неорганических фторидов, а пока автор должен был ограничиться приведением имеющихся данных с указанием источника. [c.315]

    Наибольшее повышение электропроводности (<т) получено у следующих МСС с неорганическими фторидами [6-56] [c.294]

    Кинетические характеристики реакции образования монофторида углерода при фторировании графитированной ткани / Рабинович С. С., Гуревич И. Г., Полякова Н. В. и др.— В сб. Тезисы докладов. VI Всесоюзный симпозиум по химии неорганических фторидов, 21-23 июля 1981 г., г. Новосибирск. Институт неорганической химии, СО АН СССР, с. 188. [c.689]

    К. Фаянс связал окраску неорганических соединений с деформацией электронных оболочек их анионов. Чем сильнее деформация, тем интенсивнее и глубже окрашено соединение. Например, деформация увеличивается в ряду ионов фторид — хлорид — бромид — иодид. Поэтому фториды почти всегда бесцветны, хлориды окрашены слабее, чем бромиды, а бромиды слабее, чем иодиды. Сульфиды окрашены интенсивнее окислов, а окислы сильнее, чем гидроокиси. К. Фаянс указал, что окраска связана также с деформирующей силой катиона. Твердые галогениды двух- и трехвалентных металлов (хлорид кальция, хлорид алюминия) бесцветные, галогениды четырехвалентных металлов (хлорид титана) окрашены, если катион малого размера, и бесцветны (хлорид тория), если катион большого размера. Радиус иона Ti + [c.32]


    Хотя, как было показано выше, вторичные бромиды в условиях МФК-замещения дают главным образом алкены, более активные мезилаты превращаются во вторичные галогениды с относительно хорошими выходами. Из оптически активного 2-октилмезилата были получены оптически активные хлорид (выход 83%, оптическая, чистота 89%) и бромид (выход 78%, оптическая чистота 82%). Реакцию проводили в присутствии 5 мол.% аликвата 336 или трибутилгексадециламмонийброми-да при 100 °С в течение 1,5 или 0,5 ч соответственно. Для уменьшения рацемизации в результате повторного обмена при получении фторида, который реагирует слишком медленно, использовали эквимолярное количество неорганической соли. [c.113]

    Калориметрический метод определения теплот сгорания в калориметрической бомбе первоначально был разработан применительно к органическим соединениям, подавляющее большинство которых экзотермически окисляется кислородом. Затем по мере развития калориметрии в течение последних десятилетий широкое распространение получил метод определения теплот взаимодействия неорганических соединений с кислородом и галогенами. Так, методом сожжения в атмосфере фтора под давлением были установлены стандартные термодинамические характеристики ряда фторидов, путем замещения хлора на кислород — теплоты образования некоторых оксидов, окси-хлоридов и хлоридов. Поэтому в настоящее время метод определения тепловых эффектов с помощью калориметрической бомбы можно считать инструментальным ме+годом неорганической химии. [c.18]

    Атом водорода в полученном димере связан с двумя атомами фтора одной ковалентной связью и одной водородной связью. Энергия водородной связи составляет 8—40 кДж/моль, т. е. обычно больше энергии межмолекулярного взаимодействия, но значительно меньше энергии ковалентной связи. Водородная связь имеет весьма широкое распространение. Она встречается в неорганических и органических соединениях. Водородная связь иногда определяет структуру вещества и заметно влияет на физико-химические свойства. Важную роль играет водородная связь в процессах кристаллизации и растворения веществ, образования кристаллогидратов, ассоциации молекул и др. Водородная связь обусловливает отклонение свойств некоторых соединений от свойств их атомов. Примером полимерных ассоциатов может служить фторид водорода  [c.68]

    Пиридин хорошо растворяет многие неорганические галогениды (кроме фторидов) и нитраты. Его диэлектрическая проницаемость сравнительно невелика (е = 12,5 при [c.556]

    Реакции МФК легко протекают в малополярных апротонных растворителях. Их диэлектрические проницаемости изменяются от 8,9 (дихлорметан), 4,7 (хлороформ) и 4,2 (диэтиловый эфир) до 2,3 (бензол) и 1,9 (гексан). Хотя растворимость обычных неорганических солей в этих растворителях пренебрежимо мала, органические четвертичные аммониевые, фосфоние-вые и другие ониевые соли, так же как и замаскированные органической оболочкой соли щелочных металлов, часто достаточно растворимы, особенно в дихлорметане и хлороформе. В этих растворителях концентрация свободных ионов незначительна и доминируют ионные пары. Вследствие слабого взаимодействия между ионными парами и молекулами растворителя реакция с электрофилами в органической фазе идет ыстро, и некоторые обычно слабые нуклеофилы (например, ацетат) оказываются сильными. Так, например, в гомогенных растворах в ацетонитриле относительная нуклеофильность солей тетраэтиламмония в реакции замещения с различными анионами от азида до фторида различается всего в 80 раз, причем фторид является наиболее сильным нуклеофилом среди галогенидов [127]. Различия в реакционной способности ионов в таких растворителях по сравнению с нормальным поведени- м в некоторых случаях бывают просто поразительными, и та- [c.18]

    Фториды неорганические хорошо растворимые (натрия фторид на-трия гексафторсиликат)  [c.1072]

    ГАЛОГЕНИДЫ НЕОРГАНИЧЕСКИЕ (устар.—галиды), соединения галогенов с менее электроотрицат. элементами. См. Вромиды неорганические, Иодиды неорганические, Полигалогениды, Фториды неорганические. Хлориды неорганические. Об орг. галогенидах см., напр., Галогенангидриды карбоновых кислот. Галогенопроизводные углеводородов. [c.118]

    Активный компонент и промотор вводят в виде солей неорганических кислот (хлорида, сульфата, фторида, бромида никеля) и органических кислот (4юрмиата, ацетата никеля) с последующей сушкой при температуре 95—205° С и прокалкой при 590— 760° С (реже при 900° С). Никель вводят (совместно с ураном) в носитель также в форме ураната никеля. [c.27]

    Исследована зависимость удельного объемного сопротивления осадков ряда неорганических солей, образующихся при разделении их водных суспензий на фильтре, от концентрации твердых частиц в суспензии [206]. Использованы сульфаты кальция, бария и стронция, карбонат кальция, фторид лития и фосфат магния (МдНР04) реактивной степени чистоты, что сводит влияние примесей на удельное сопротивление осадка до минимума размер [c.188]


    За небольшим исключением здесь представлены только вещества, для которых имеются данные для высоких температур, причем преимущественно те, которые более интересны в практическом или теоретическом отношении. Так, из неорганических галогенидов представлены почти исключительно фториды и хлориды, из халь-когенидов — окислы и сульфиды и т. д. Не были включены группы веществ, представляющих более узкий интерес, например соединения индивидуальных изотопов водорода (кроме воды), моногидриды и моногалогениды элементов 2, 4 и последующих групп периодической системы, некоторые сложные соединения, (смешанные галогениды и оксигалогениды металлов, алюмосиликаты, кристаллогидраты солен, комплексные соединения). Однако в таблицах приведены данные для некоторых молекулярных ионов, радикалов и частиц, неустойчивых в рассматриваемых условиях. Из органических веществ здесь представлены только углеводороды, спирты, тиолы, тиоэфиры и отдельные представители других классов. При этом из всех классов органических веществ исключены высшие нормальные гомологи, для которых данные получены на основе допу- [c.312]

    Многае соединения фтора полу чают не прямьш фторированием, а обменом хлора на фтор при действии неорганических фторидов  [c.196]

    До 20-х годов нашего века для борьбы с вредными насекомыми применялись иренмуществегшо неорганические вещества — арсенатр , фториды, силнкофторнды, соединения серы н селена. Из органических соединений, обладающих инсектицидными свойствами, были известны только вещества растительного происхождения, напрнмер препараты табака (никотин) и дерриса (ротенон), а также экстракты пиретрума (пиретрин), которые будут рассмотрены в другом месте этой книги. [c.520]

    Свойства МСС с неорганическими фторидами. В связи с очень низкой электропроводностью неорганических фторидов при их внепрении в углеродную матрицу кроме значит< льного повышения электропроводности (10 — 10 См/м) вдоль углеродных плоскостей резко возрастает ее анизотропия (<Та/<Тс = [c.294]

    Обычно же энергия водородЪой связи лежит в пределах 5— 25 кДж/моль, т. е. она больше энергии межмолекулярного взаимодействия, но значительно меньше энергии ковалентной связи. Водородная связь имеет весьма широкое распространение. Она встречается в неорганических и органических соединениях. Водородная связь иногда определяет структуру вещества и заметно влияет на физико-химические свойства. Важную роль играет водородная связь в процессах кристаллизации и растворения веществ, образования кристаллогидратов, ассоциации молекул и др. Примером полимерных ассоциатов может служить фторид водорода  [c.59]

    Структура u свойства полифторуглерода применительно к его использованию в качестве катодного материала в химических источниках тока / Фиалков А. С., Полякова Н. В., Дубасова В. С. и др.— В сб. Тезисы докладов VII Всесоюзного симпозиума по химии неорганических фторидов, Душанбе, 9-11 октября 1984 г. М. Наука, 1984, с. 325. [c.690]

    СТЕКЛО (обыкновенное, неорганическое, силикатное) — прозрачный аморфный сплав смеси различных силикатов или силикатов с диоксидом кремния. Сырье для производства стекла должно содержать основные стеклообразующие оксиды 510а, В Оз, Р2О5 и дополнительно оксиды щелочных, щелочноземельных и других металлов. Необходимые для производства С. материалы — кварцевый песок, борная кислота, известняк, мел, сода, сульфат натрия, поташ, магнезит, каолин, оксиды свинца, сульфат или карбонат бария, полевые шпаты, битое стекло, доменные шлаки и др. Кроме того, при варке стекла вводят окислители — натриевую селитру, хлорид аммония осветлители — для удаления газов — хлорид натрия, триоксид мышьяка обесцвечивающие вещества — селен, соединения кобальта и марганца, дополняющие цвет присутствующих оксидов до белого для получения малопрозрачного матового, молочного, опалового стекла или эмалей — криолит, фторид кальция, фосфаты, соединения олова красители — соединения хрома, кадмия, селена, никеля, кобальта, золота и др. Общий состав обыкновенного С. можно выразить условно формулой N3,0-СаО X X65102. Свойства С. зависят от химического состава, условий варки и дальнейшей обработки. [c.237]

    Структура неорганических веществ отличается большим многообразием в зависимости от природы и числа частиц, входящих в кристаллическую решетку. При этом частицы одного вида соединяются друг с другом посредством металлической связи (элементы левой части таблицы Д. И. Менделеева), ковалентной связи с образованием полимерного каркаса (элементы середины таблицы), связи частично ионной и частично ковалентной (некоторые элементы П1, IV и V групп таблицы Д. И. Менделеева), ковалентной связи с образованием отдельных молекул и ван-дер-ваальсовых сил между этими молекулами. При наличии в составе соединения частиц двух видов связь между ними может быть ионной или близкой к ней при значительной разности электроотрицательностей между элементами (фториды, хлориды, ряд оксидов) при малой разности электроотрицательностей — преимущественно ковалентной (SO2, СО т. д.), а также связью, сочетающей признаки и ионной, и ковалентной (большинство оксидов, карбиды, нитриды, бо-риды, силициды). При наличии же в составе соединения трех и более элементов картина может быть еще более сложной. Отдельные элементы за счет преимущественно ковалентной связи между ними могут образовать самостоятельные структурные группировки — радикалы типа SO42-, Si04 -, А104 и т. д., остальные же элементы вследствие передачи своих электронов этим радикалам могут связываться с ними посредством преимущественно ионной связи (Na+, Са2+, АР+ и т. д.). Более того, могут возникать группировки в виде цепей, лент, слоев и даже каркасов, имеющих заряды, равномерно локализованные по фрагментам этих группировок, связанных друг с другом через катионы металлов. Б случае же незаряженных структурных единиц, например слоев у некоторых глинистых минералов, связь между слоями является ван-дер-ваальсо-вой, или водородной. [c.25]

    Помимо воды, из неорганических соединений в жидком НР хорошо растворимы фториды, нитраты и сульфаты одновалентных металлов (и аммония), хуже — аналогичные соли Мд, Са, 8г и Ва, По рядам Ь1—Сз и Мд—Ва, т, е. по мере усиления металлического характера элемента, растворимость повышается. Щелочные и щелочноземельные соли других галоидов растворяются в НР с выделением соответствующего галоидоводорода. Соли тяжелых металлов в жидком НР, как правило, нерастворимы. Наиболее интересным исключением является Т1Р, растворимость которого исключительно велика (в весовом отношении около 6 1 при 12°С). Практически нерастворимы в жидком НР другие галондоводороды. Концентрированная серная кислота взаимодействует с ним по схеме + ЗНР НзО + НЗОдР + НР . Жидкий фтористый водород является лучшим из всех известных растворителем белков. [c.247]

    Важнейшими неорганическими соединениями элементов УБ группы являются оксиды, фториды (оксофториды), хлориды, нитриды II карбиды. Оксиды МО2 и М2О5 — амфотерные соединения. ЫЬгОз и Та Об нерастворимы в воде и устойчивы к воздействию кислот. [c.519]

    Простыв и комплексные анионы. Анионами в неорганических соединениях являются кислотные остатки и ионы гидроксила. Величина отр1щательного заряда кислотного остатка равна числу потерянных атомов водорода. Названия элементарных анионов бескислородных кислот составляют из корня латинского названия элемента, суффикса -ид и слова ион фторид-ион р- сульфид-ион Названия слоя ных ионов пероксид-ион (—О—О—)2-, пе])сульфид-ион S (—5—5—)2-, цианид-ион 0Ы Если в состав аниона входит атом водорода, то к названию иона добавляют пристав гидро- гидроксид-ион 0 -, гидропероксид-ион НОг (Н—О—О—)-, гидросульфид-ион Н5 , гид-ротеллурид-ион НТе . [c.14]


Библиография для Фториды неорганические: [c.223]    [c.87]    [c.684]   
Смотреть страницы где упоминается термин Фториды неорганические: [c.638]    [c.638]    [c.30]    [c.289]    [c.533]    [c.246]    [c.175]    [c.278]    [c.563]    [c.498]    [c.358]    [c.226]    [c.237]    [c.77]   
Химический энциклопедический словарь (1983) -- [ c.638 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.638 ]

Новое в технологии соединений фтора (1984) -- [ c.8 , c.9 , c.22 , c.23 , c.34 , c.140 , c.141 , c.247 , c.257 ]

Химия органических соединений фтора (1961) -- [ c.45 ]




ПОИСК







© 2025 chem21.info Реклама на сайте