Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтальпия идеального раствора

    Как известно, идеальные растворы, т. е. растворы, образующиеся без изменения энтальпии, энтропия которых равна энтропии смешения идеальных растворов, подчиняются закону Рауля, определяющему ряд важных свойств растворов в зависимости от содержания в них растворенного вещества. Если растворенное вещество нелетуче, т. е. если давление его паров практически равно [c.451]


    При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения АН в большинстве случаев мала в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера н растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров. [c.33]

    Жидкая пропан-бутановая смесь обладает всеми свойствами идеального раствора, п интегральная теплота смешения ее компонентов равна нулю. Поэтому энтальпии растворов определяются на основе правила аддитивности расчет приведен в табл. III.4. [c.185]

    Значит, энтальпия идеального раствора равна сумме энтальпий отдельных компонентов, а сами энтальпии отдельных компонентов не зависят от состава. [c.61]

    На рис. 1Х-4 показана зависимость энтальпии жидкости и теплоты растворения от состава, которая типична для систем, дающих положительные отклонения от закона Рауля. Общая энтальпия такой смеси к больше, чем энтальпия идеального раствора /г, причем [c.217]

    Очевидно, расчет энтальпий по (1.100) эквивалентен случаю, когда углеводородная система принята за идеальный раствор, мольные энтальпии компонентов которого совпадают с их парциальными мольными энтальпиями. На тепловой диаграмме изотермы (1.100) представляются прямыми, соединяющими энтальпию чистого компонента а при х = 1 с энтальпией чистого w при X = 0 однако лишь одна точка каждой из этих изотерм, та, абсцисса которой равна концентрации х равновесной жидкой фазы, принадлежит линии насыщенной жидкости на энтальпий-ной диаграмме. [c.58]

    Аналогичным образом, представляя энтальпии паровых и жидких смесей как свойства идеальных растворов [c.404]

    Исходя из определения идеальных растворов, данного выше, можно показать (методами термодинамики), что при образовании идеальных растворов из чистых жидких компонентов теплота не поглощается и не выделяется, а объем раствора равен сумме объемов жидких компонентов (при растворении нет сжатия или расширения). Иначе говоря, энтальпия Н и объем V идеальных растворов являются аддитивными свойствами  [c.190]


    Смеси, в процессе образования которых отсутствуют тепловые и объемные эффекты, т. е. АЯ-= О и АУ = О, называются идеальными растворами. Иногда для выражения этой особенности идеальных растворов говорят, что для нпх энтальпия и объем аддитивны . Понятие об идеальном растворе является воображаемым реальные растворы могут быть только более или менее близки к идеальным. [c.232]

    Смеси, в процессе образования которых тепловые и объемные эффекты отсутствуют, т. е. АН = 0 и ЛУ = О, называются идеальными растворами. Иногда эту особенность идеальных растворов выражают другими словами — говорят, что для них энтальпии и объемы аддитивны. [c.137]

    Т. е. при образовании идеального раствора изменения энтальпии не происходит. Так как АСр м в соответствии с (64.5) является температурным коэффициентом изменения энтальпии в процессе, а изменение энтальпии равно нулю, то и [c.354]

    Отсутствие термических, объемных и других эффектов, выражаемое соотношениями (124.8), (124.9), (124.11) и (124.12), показывает, что энтальпия, теплоемкость, объем и внутренняя энергия идеального раствора (й обш) аддитивно складываются из соответствующих свойств g° чистых компонентов  [c.354]

    Таким образом, термодинамические характеристики образования идеального раствора показывают, что в этом процессе энергия Гиббса уменьшается, энтропия возрастает, а энтальпия, теплоемкость, внутренняя энергия и объем не меняются. Только при одновременном выполнении всех этих условий раствор является идеальным. Иногда эти условия называют законами идеальных растворов. Приближаются по своим свойствам к идеальным растворам, например, смеси оптически активных изомеров, смеси изотопов, смеси некоторых неполярных органических веществ, таких, как бензол — толуол, некоторые расплавы. [c.355]

    Значения энтальпии растворения фуллерена С60 находили по углу наклона прямых. Из графических данных на рис. 3.2, а, можно заключить, что зависимости для низкотемпературного диапазона кривых растворимости С60 в обоих исследуемых растворителях характеризуются удовлетворительными линейными корреляциями (99 %). Это указывает на справедливость рассмотрения исследуемых растворов в рамках модели идеального раствора. Данное заключение, однако, не следует относить к рассмотрению растворов С60 в толуоле при температурах выше ТМР. Как видно из рис, 3,2, б относительный ход экспериментальных данных по растворимости фуллерена не согласуется с координатами точки, отвечающей температуре плавления С60, что отражается на снижении величины достоверности линейной аппроксимации до 75 %. Поэтому расчет энтальпии растворения С60 в насыщенный толуольный раствор при температурах выше ТМР проводили по наклону прямой, проведенной без учета температуры плавления фуллерена, и получили удовлетворительную линейную [c.61]

    Интересно отметить, что значения теплоты растворимости С60 в насыщенный раствор толуола, полученные в рамках модели идеального раствора, практически согласуются со значением энтальпии плавления С60. [c.62]

    В разделе 3.2.1. показано, что вычисленные значения энтальпии растворения С60 в насыщенные толуольные растворы при температурах ниже ТМР максимально близки к значению энтальпии плавления фуллерена С60, что явно указывает на близость свойств данных растворов к идеальным. Однако известно, что образование идеальных растворов, кроме того, не сопровождается тепловым и объемным эффектом. Сравнительный анализ с идеальными растворами по данному аспекту возможен при помощи расчета значений парциальных избыточных термодинамических функций фуллерена С60 в исследуемых растворах. [c.66]

    Расчет избыточных парциальных термодинамических функций для фуллерена С60 в насыщенных растворах толуола при температуре ниже ТМР показал (табл. 3.1), что ни одна из термодинамических величин для фуллерена С60 в данных растворах не отличается от таковой для модели соответствующего идеального раствора. Полученный результат согласуется с данными расчетов энтальпии растворения С60 в насыщенный раствор толуола ниже ТМР (раздел [c.69]

    Справедливость данного заключения еще более четко выражена при аналогичном сравнении для насыщенных растворов С60 в толуоле. Как было показано в разделе 3.2, модель идеального раствора весьма адекватно описывает термодинамическое поведение насыщенных толуольных растворов С60 в низкотемпературной области и дает положительные значения энтальпии растворения, согласующиеся с эндотермической ветвью на экспериментальной кривой растворимости ниже ТМР. Расчет теплоты растворимости в насыщенные растворы толуола, проведенный согласно капельной модели, дает отрицательную величину энтальпии растворимости С60 для температур ниже ТМР, равную -10,7 кДж/моль. [c.73]

    Одной из причин несходимости результатов расчетов энтальпии растворения С60 в насыщенные растворы в четыреххлористом углероде и толуоле при температурах ниже ТМР, полученных в рамках капельной модели и в модели идеального раствора, является неучтенный в капельной модели фактор теплоты плавления твердой фазы, относительно которой насыщены растворы фуллерена. В данном случае представляется интересным рассмотреть экспериментальные данные по растворимости С60 в обоих растворителях согласно модели об- [c.74]


    Значение энтальпии растворения составило 32 кДж/моль, что близко к значению энтальпии растворения СбО, рассчитанному в модели идеального раствора без учета образования кристаллосольвата (табл.3.1). Однако необходимо отметить, что в полученные практически равными величины энтальпии растворения СбО вкладывается разный смысл в рассматриваемых термодинамических моделях. [c.75]

    В модели идеального раствора С60 расчет энтальпии растворения фуллерена в насыщенный раствор в четыреххлористом углероде при температурах ниже ТМР проводится по уравнению Шредера (3.1), которое включает теплоту плавления чистого фуллерена и слагаемое, характеризующее взаимодействие в растворе. Данное слагаемое является эндотермичным и составляет 9 кДж/моль, что согласуется с положением о присутствии в системе твердого кристаллосольвата. [c.76]

    Если силь) притяжения между однородными частицами в растворе больше, чем между разнородным , то наблюдается положительное отклонение от закона Рауля, выражающееся превышением давления пара над раствором по сравнению с давлением, рассчитанным по закону Рауля. На рис. IV. 11, а это отклонение отображено изгибом кривых зависимости Р = f (х) вверх от штриховой линии, изображающей зависимость Р = f (х) для идеального раствора. Образование растворов с положительным отклонением от закона Рауля, как правило, сопровождается возрастанием энтальпии (АЯр > 0) и расширением системы (Кем > Vi + У ), но возможно и обратное. [c.219]

    В случае энтальпии уравнение (11.9) неприменимо к идеальным растворам, т к величины H и Н2 не зависят от А 2. В неидеальных системах величина [c.183]

    Поскольку для идеального раствора Я = О, избыточная энтальпия опреде- [c.208]

    Для идеального раствора дифференциальная молярная энтальпия растворения Д//а равна дифференциальной молярной энтальпии испарения Д/Уь- По правилу Трутона [c.145]

    Такая простая форма уравнения для изменения свободной энергии при смешении характерна только для идеальных растворов. Соответствующая этому уравнению энтальпия смешения равна нулю. Действительно, на основании связи между изобарно-изотермическим потенциалом и энтальпией можно записать [c.305]

    По термодинамическим свойствам растворы классифицируют на идеальные и неидеальные. Идеальным называют раствор, в процессе образования которого уменьилается энергия Гиббса, возрастает энтропия, а объем, энтальпия, внутренняя энергия и теплоемкость не меняются. Невыполнение одного из этих условий приводит к образованию неидеального раствора. Идеальные растворы подчиняются законам Вант-Гоффа и Рауля, связывающих моляльную концентрацию раствора с такими его свойствами, как осмос, понижение давления пара растворителя над раствором, повышение температуры кипения и понижение температуры замерзания. Эти свойства называют коллигативными, поскольку они зависят только от концентрации, но не зависят от природы растворенного вещества. [c.23]

    Как видим, смешение компонентов, образующих идеальный раствор, происходит без изменения энтальпии. Это означает, чтО если компоненты смешиваются при постоянных р и Г, то выделение или поглощение тепла не наблюдается. Объем системы при образовании идеального раствора также не изменяется, т. е. для идеальных растворов объем смешения равен нулю. Это следует из взаимосвязи между объемом и изобарно-изотермическим потен- [c.305]

    На основании выражений для химического потенциала идеального раствора и соотношений (У1.26) и (ХП.29) легко убедиться, что в идеальном растворе парциальные молярные энтальпии /1г.ид и парциальные молярные объемы и,-.ид компонентов зависят только от 7 и р  [c.306]

    Для средней молярной энтальпии и среднего молярного объема идеального раствора можно на основании (ХП.14) записать [c.306]

    В основе понятия об идеальном растворе лежит следующее представление мольные объемы чистых компонентов в таком растворе равны между собой и энергии взаимодействия между всеми молекулами одинаковы. От размеров молекул зависит изменение энтропии при смешении, а из различия их энергии изаимодейстпия возникает тепловой эффект нри смешении, т. е. от этого фактора зависит энтальпия раствора. Поэтому энтальпия атермических смесей, характеризующихся одинаковым взаимодействием между всеми молекулами, аддитивно вычисляется из состава, как для идеальных смесей. [c.56]

    Энтальпия растворения, аетивность, коэффициент активности и значения парциальных избыточных термодинамических величин для фуллерена С60 в растворах четыреххлористого углерода и толуола в приближении идеального раствора [c.63]

    Для растворов С60 в толуоле в температурном диапазоне выше ТМР расчет коэффициентов активностей показал увеличение их значений относительно таковых при температурах ниже ТМР (табл. 3.1). Величины активности фуллерена С60 в данных растворах также увеличиваются и превышают значения концентрации растворов, что в целом указывает на положительные отклонения растворов от идеальности и отсутствие кластерообразования (С60) . Необходимо отметить, что вывод об отсутствии кластерообразования в данных растворах, возможно, является не вполне справедливьпи и требует дополнительной проверки, поскольку расчет коэффициентов активности С60 производили в рамках модели идеального раствора (см. формулу 3.2). Учитывая, что расчет энтальпии растворения С60 по формуле Шредера показал на существенную не-идеальность данных растворов, вопрос о кластерообразовании или отсутствии такового целесообразно считать открытым на данном этапе рассмотрения изучаемых систем. [c.66]

    Расчет теплоты растворения для насыщенного раствора С60 в четыреххлористом углероде ниже ТМР не согласуется также с экспериментальными данными по температурной зависимости растворимости фуллерена в данном растворителе. Согласно экспериментальным данным, процесс растворения фуллерена в насыщенный раствор при температурах ниже ТМР является эн-дотермичным, тогда как отрицательное значение энтальпии растворения С60, полученное в рамках капельной модели раствора, показывает, что данный процесс эндотермичен (АНраст.,сбо < 0). Из сравнения значений энтальпии растворения С60 в четыреххлористом углероде ниже ТМР становится понятным, что наиболее справедливыми результатами являются данные расчетов, полученные согласно модели идеального раствора, которые показали отсутствие кластеро-образования в насыщенных растворах С60 при температурах ниже ТМР. [c.73]

    В случае идеальных растворов такие парциальные величины, как энтальпия, объем, теплоемкость, остаются такими же, как и для чистых жидкостей. Поэтому можно думать, что в реальных системах, содержащих один из компонентов в малых количествах, эти парциальные величины для обоих компонентов испытывают малое нозмушенис Следовательно, энтальпия, объем, теплоемкость будут описываться уравнениями (II 10) [c.183]

    Стандартным состоянием раствора является состояние гипотетической идеального раствора, в котором парциальная мольная энтальпия и теплоемкость растворенного вещества те же, что и в реальном бесконечно разбавленном растворе, а энтропия и свободная энергия те же, что в растворе с моляльностью, равной единице [Воробьев А. Ф. Теоретич. и эксперим. химия 8, 705—708, 1972]. — Прим. ред. [c.216]

    Стандартным состоянием газообразных веществ является состояние гипотетического идеального газа, фугитивность (летучесть) которого равна единице, а энтальпия равна энтальпии реального газа при той же температуре и давлении, стремящемся к нулю. За стандартное состояние растворов принимается состояние гипотетического идеального раствора, для которого парциальная мольная энтальпия и теплоемкость растворенного вещества те же, что и для реального бесконечнр разбавленного раствора, а энтропия и энергия Гиббса те же. что и раствора с моляльностью, равной единице [c.64]


Смотреть страницы где упоминается термин Энтальпия идеального раствора: [c.55]    [c.248]    [c.354]    [c.402]    [c.121]    [c.230]    [c.62]    [c.73]    [c.214]    [c.220]    [c.153]    [c.78]   
Химическая термодинамика Издание 2 (1953) -- [ c.251 ]




ПОИСК





Смотрите так же термины и статьи:

Идеальный газ энтальпия

Идеальный раствор

Раствор идеальный Идеальный раствор



© 2025 chem21.info Реклама на сайте