Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

образования термодинамические характеристики

    Уравнение дает возможность вычислить величины AG и Ка по экспериментальным значениям Е и, наоборот, рассчитывать Е, зная термодинамические характеристики химической реакции. Примеры использования уравнения (XIX, 4) будут рассмотрены при описании электрохимических элементов различных типов. В суммарной реакции образования хлористого серебра в электрохимическом элементе участвуют только твердые вещества и газообразный хлор. Термодинамическое состояние их однозначно определяется давлением и температурой. Очень часто в суммарной реакции участвуют растворенные тела (например, в элементе Даниэля — Якоби). Изобарный потенциал реакции в таких случаях зависит не только от р и Т, но и от активностей растворенных веществ, т. е. от концентрации раствора, и величины , найденные экспериментально, можно ис-.  [c.529]


    Понятие о средней энергии связи для неорганических соединений в кристаллическом состоянии, по-вндимому, сравнительно лучше может быть применимо для силикатов, благодаря большому числу близких по составу силикатов и накоплению обширного экспериментального материала по их термодинамическим характеристикам. О. П. Мчедлов-Петросян и В. И. Бабушкин провели расчет теплот образования различных силикатов и гидросиликатов кальция, используя величины средней энергии связи. Для некоторых соединений результаты удовлетворительно согласуются с экспериментальными данными, но имеются и сильные расхождения. Пределы применимости этого пути расчета еще не выяснены. [c.162]

    Концентрационные константы устойчивости позволяют получить значение энергии Гиббса образования комплексного соединения, когда в качестве стандартного состояния выбрано состояние раствора ионной силы /. Константа устойчивости, энергия Гиббса, энтальпия и энтропия образования комплекса составляют термодинамическую характеристику комплексообразования, которая позволяет оЦенить факторы, определяющие устойчивость комплексов. [c.616]

    В расчетах методом суммирования широко используются термодинамические характеристики реакций образования веществ. Свободная энергия образования вещества в стандартных условиях, АРf, представляет собой изменение свободной энергии, происходящее при образовании этого вещества в его обычном состоянии (твердое тело, жидкость или газ) из составляющих элементов, находящихся в стандартном состоянии. За стандартное состояние элемента обычно принимается его наиболее стабильная форма при комнатной температуре. Стандартное состояние углерода — графит, водорода или кислорода — двухатомные газы. Изменение свободной энергии в стандартных условиях можно легко рассчитать, складывая стандартные свободные энергии образования индивидуальных компонентов реакции. Так, например, АР° для сгорания бутадиена (первая реакция в (УП-4) рассчитывается по выражению [c.361]

    Вместе с тем равновесные свойства (термодинамические характеристики) образующихся растворов полимеров не зависят от способа их приготовления. Растворы высокомолекулярных соединений в большинстве случаев истинные. Однако на практике встречается весь спектр взаимодействий растворителей с полимерами - от способности образовывать истинные растворы до образования коллоидных систем с различной степенью дисперсности частиц полимера. [c.90]


    Термодинамические характеристики некоторых веществ стандартные тепловые эффекты, энтропии и изобарные потенциалы реакций образования из простых веществ [c.121]

    Статистический метод позволил использовать многие из этих величин для расчета термодинамических характеристик при высоких температурах, которые необходимы для осуществления процессов нефтепереработки. Стало возможным найти термодинамические свойства идеальных газов. Экспериментальные теплоты сгорания позволили затем определять величины АЯо, связывающие термодинамические функции реакции и чистых веществ. Применением расчетных и экспериментально найденных характеристик получили свободные энергии и теплоту образования веществ в широких температурных пределах. [c.372]

    ТЕРМОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ РАСТВОРОВ И ПРОЦЕССОВ ИХ ОБРАЗОВАНИЯ [c.162]

    Таким образом, термодинамические характеристики образования идеального раствора показывают, что в этом процессе энергия Гиббса уменьшается, энтропия возрастает, а энтальпия, теплоемкость, внутренняя энергия и объем не меняются. Только при одновременном выполнении всех этих условий раствор является идеальным. Иногда эти условия называют законами идеальных растворов. Приближаются по своим свойствам к идеальным растворам, например, смеси оптически активных изомеров, смеси изотопов, смеси некоторых неполярных органических веществ, таких, как бензол — толуол, некоторые расплавы. [c.355]

    В справочнике представлены результаты расчета термодинамических характеристик 280 реакций термического разложения, термоокислительного пиролиза и конверсии нормальных углеводородов С1—С5 парами воды и двуокисью углерода с образованием в результате реакций алкенов, алкинов, диенов, окиси углерода и водорода (синтез-газ) и элементарного углерода. Рассмотрены также реакции горения этих веществ. [c.2]

    Для оценки точности термодинамических расчетов реакций превращения и образования углеводородов ниже приведены термодинамические характеристики нескольких реакций, которые рассчитывались разными авторами (табл. 4—6). [c.147]

    Активный комплекс отличается от обычной молекулы лишь тем, что в нем проходит процесс образования одних связен и разрушения других. Для описания термодинамических характеристик активного комплекса, находящегося в состоянии, при котором вероятность его распада на исходные молекулы равна вероятности распада на продукты, т. е. имеющем максимум энергии, можно применить все известные термодинамические соотношения. Константа равновесия образования активного комплекса связана с изменением его изобарного потенциала соотношением (для стандартных условий)  [c.66]

    Поверхностным натяжением называется термодинамическая характеристика поверхности раздела фаз, определенная как работа обратимого изотермического образования единицы площади этой поверхности. Для жидкости поверхностное натяжение рассматривается как сила, действующая на единицу длины контура поверхности и стремящаяся сократить поверхность до минимума при заданных объемах фаз. [c.21]

    Другой важнейшей термодинамической характеристикой реакции является тепловой эффект ДЯ. Известно, что реакции рекомбинации протекают как сильно экзотермические процессы. Большие теплоты этих реакций являются следствием образования новой связи (например, С—С или С—Н) при соединении двух радикалов. [c.90]

    Одним из важных направлений работ по электронному удару является измерение энергии, необходимой для ионизации молекул и их диссоциации. Во многих случаях возможно также получить удовлетворительные сведения о величинах энергии связей, а в комбинации с известными термодинамическими характеристиками — о теплотах образования радикалов, молекулярных ионов и ионов-радикалов. Это позволяет сделать выбор между различными структурами ионов и установить механизм их образования. [c.174]

    Выясним теперь, как изменяются основные термодинамические характеристики систем при образовании в них идеальных растворов. Для простоты будем рассматривать систему, содержащую только 2 компонента (А и В). [c.194]

    Очевидно, что в этом случае теплота образования самих простых веществ (за исключением одноатомных газов) не будет равна нулю. Эта термодинамическая характеристика менее удобна для практических расчетов тепловых эффектов, но зато она тесно связана с очень важным понятием о так называемых энергиях связи. [c.80]

    РАБОТА 6. ОПРЕДЕЛЕНИЕ ТЕРМОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ОБРАЗОВАНИЯ ЕДИНИЦЫ ПЛОЩАДИ ПОВЕРХНОСТИ [c.31]

    Калориметрический метод определения теплот сгорания в калориметрической бомбе первоначально был разработан применительно к органическим соединениям, подавляющее большинство которых экзотермически окисляется кислородом. Затем по мере развития калориметрии в течение последних десятилетий широкое распространение получил метод определения теплот взаимодействия неорганических соединений с кислородом и галогенами. Так, методом сожжения в атмосфере фтора под давлением были установлены стандартные термодинамические характеристики ряда фторидов, путем замещения хлора на кислород — теплоты образования некоторых оксидов, окси-хлоридов и хлоридов. Поэтому в настоящее время метод определения тепловых эффектов с помощью калориметрической бомбы можно считать инструментальным ме+годом неорганической химии. [c.18]


    Ниже приведены термодинамические характеристики (стандартная энтальпия образования и стандартная энтропия) всех веществ, участвующих в рассматриваемой реакции этерификации  [c.79]

    Определив константу нестойкости, по крайней мере, для двух температур, легко вычислить термодинамические характеристики процесса диссоциации и образования комплексного иона. [c.342]

    Определение термодинамических характеристик реакций, протекающих в обратимых гальванических элементах, можно проводить как на системах, состоящих из органических соединений хи-нон-гидрохинон, так и на ряде окислительно-восстановительных систем, содержащих неорганические ионы в различных степенях окисления. В качестве примера обратимой реакции, используемой для определения термодинамических функций и протекающей в гальваническом элементе, состоящем из водородного и хингидронного электродов, рассмотрим восстановление хинона в гидрохинон. Реакция протекает в две стадии с образованием в качестве промежуточного продукта хингидрона  [c.310]

    Все процессы образования адсорбционного соединения на активном центре и перераспределение связей на нем идут с определенными энергетическими эффектами. Возникает вопрос, нельзя ли, исходя из термодинамических характеристик процесса (энергия связи катализатора с субстратом, тепловой эффект реакции и энергия связи катализатора с продуктами реакции), выбрать наиболее активный катализатор для данного процесса. Поэтому был выдвинут принцип энергетического соответствия. Следуя этому принципу, разберем энергетические эффекты реакции обменного каталитического разложения  [c.445]

    Для процессов комплексообразования становится возможным рассчитывать также константы скоростей и константу равновесия. При малых концентрациях комплекса в большинстве случаев о процессе комплексообразования судят только качественно по уширению линий и слабым изменениям химических сдвигов в спектре. Однако химический сдвиг может быть использован для определения констант равиовесия и термодинамических характеристик. Если в системе происходит процесс образования комплекса, отвечающего уравнению [c.266]

    В лекциях 9—11 была дана количественная интерпретация на основе молекулярно-статистической теории адсорбции и полуэмпирической теории межмолекулярных взаимодействий адсорбат — адсорбент термодинамических характеристик адсорбции при нулевом заполнении поверхности. Перейдем теперь к большим заполнениям поверхности, при которых проявляются также и межмолекулярные взаимодействия адсорбат — адсорбат, т. е. к интерпретации изотермы адсорбции и состояния адсорбированного вещества при малых п средних заполнениях, ограничиваясь адсорбцией на однородной поверхности инертного адсорбента. Адсорбция различных адсорбатов даже на однородной плоской поверхности графитированной термической сажи (см. лекции 1, 7—10) зависит от природы адсорбата и адсорбента, характера межмолекулярных взаимодействий адсорбат — адсорбент и адсорбат — адсорбат. На рис. 12.1 сопоставлены зависимости дифференциальной теплоты адсорбции д от адсорбции Г, а на рис. 12.2 — соответствующие изотермы адсорбции паров воды, этанола, бензола и н-пентана на поверхности ГТС при комнатной температуре (см. также рис. 1.4, 1.5, 7.4, 7.6, 8.8, 8.9). Межмолекулярное взаимодействие с ГТС неспецифическое, поэтому способность молекул воды, этанола и бензола к специфическим межмолекулярным взаимодействиям, в частности к образованию водородных связей, при взаимодействии с ГТС не реализуется. [c.222]

    Рассмотрим ряд реакций образования отдельных минералов на основе различных исходных соединений и при различном их соотношении. Термодинамические характеристики соединений, участвующих в реакциях, представлены в табл. 7.12. Методика проведения анализа изложена выше. Реакции с образованием алюминатов рассматриваем без учета полиморфного превращения -АЬОз в а-АЬОз. При более точном расчете требуется учитывать и полиморфные превращения минералов. [c.226]

    Как видим, появление дополнительно еще только одной жидкой фазы существенно усложняет общую картину фазового равновесия в двухкомпонентной системе. Очевидно, образование промежуточных твердых фаз в двухкомпонентной системе также должно внести самостоятельный элемент в диаграмму состояния. Как правило, промежуточные твердые фазы формируются на основе определенных химических соединений, которые могут плавиться конгруэнтно либо распадаться в результате перитектического превращения. Обсуждение характера концентрационной зависимости изобарно-изотермического потенциала промежуточных, фаз следует вести в соответствии со строго термодинамически обоснованным понятием фазы. При этом требуется уточнение принадлежности растворов на основе существующих в системе определенных химических соединений к одной или разным фазам. Как известно, природа фаз определяется особенностями межмолекулярного взаимодействия. Последнее в первую очередь обусловлено сортом частиц, их образующих, так как именно природа частиц, образующих данную фазу, обусловливает величину и характер сил обменного взаимодействия, что приводит к формированию вполне определенных химических йязей. Если растворы и фазы различаются родом образующих их частиц (по сортности), то, следовательно, их химические составы (речь идет об истинных составах) качественно различны. Следствием этого является тот факт, что термодинамические характеристики фаз, различающихся родом частиц, описываются разными фундаментальными уравнениями. Это очень важное заключение с необходимостью приводит к выводу о том, что такие растворы даже в пределах одной гомогенной системы должны рассматриваться как самостоятельные фазы. Различие между зависимостями свойств растворов, имеющих качественно иные химические составы, от параметров состояния должно проявляться если не в виде функций, то по крайней мере в значениях постоянных величин, фигурирующих в уравнениях этих функций и отражающих специфику меж-частичного взаимодействия, а следовательно, и химическую природу сравниваемых растворов. В случае растворов или фаз переменного состава данному качественному составу или, иначе говоря, данному набору частиц по сорту отвечает конечный интервал Голичественных составов в данной системе, в пределах которого только и существует строго определенный единственный вид зависимости термодинамических и иных свойств от параметров состояния. Положение о том, что характер зависимости свойств от параметров состояния определяется качественным химическим составом, весьма существенно и названо А. В. Сторонкиным принципом качественного своеобразия определенных химических соединений. Значение этого принципа заключается в том, что его использование позволяет четко определить принадлежность рас- [c.293]

    Для суждения о составе комплексных соединений и получения основных термодинамических характеристик реакций их образования существенны представления о ступенчатости этих реакций и разработка экспериментальных физико-химических методов и методов математической обработки опытных данных. [c.616]

    В силу предположения о независимости дефектов изменение свободной энергии системы при образовании Ыр дефектов следует приравнять величине Ыр р, если за конечное состояние принята некото-рая определенная конфигурация системы (заданный способ распределения в кристалле вакансий и междоузлий). Чтобы найти действительные термодинамические характеристики процесса образования Л р дефектов, мы должны учесть еще, каким числом способов данный процесс может быть реализован. Начальное состояние (правильная решетка) реализуется одним способом для конечного состояния таких [c.335]

    Для большого числа газообразных углеводородов и их производных, а также для многих неорганических газов стандартные свободные энергии и теплота образования при различных температурах найдены и сведены в таблицы. Метод, посредством которого были определены эти показатели, представляет интерес с различных точек зрения. Рассматриваемые закономерности носят характер фундаментального соотношения между термодинамическими характеристиками реакций и компонентов реакций. Следовательно, эти закономерности применимы к любым реакциям в той же мере, что и к реакциям образования. Добавим, что в ряде случаев можно будет получить достаточно полные термодинамические характеристики веш естБа, но надо будет привести их в удобный вид, испо.тьзуя те же закономерности. [c.362]

    Второй метод корреляционного расчета имеет ограниченное применение, поскольку достигаемая точность расчета свободных энергий образования — невелика (1 ккал моль). В табл. УП-1 включены термодинамические характеристики изомеров н-геитана, из которых можно сделать вывод о том, что между характеристиками изомеров не существует большой разницы это обстоятельство подчеркивает важность точного расчета равновесных характеристик. [c.374]

    В Секторе нефтехимии проводились работы по уточнению ресурсов нефтехимического сырья на Украине, в частности по оценке содержания нормальных алканов и ароматических углеводородов в различных фракциях нефтей Украины, изучались теоретические основы карбамидной депарафинизации. В соавторстве с П. Н. 1 аличем, Л. А. Куприяновой, К. И. Патриляком и другими исследованы процесс клатратообразования, взаимодействие индивидуальных нормальных алканов С —С12 с карбамидом в широком диапазоне температур в разных средах, равновесие в системах карбамид — алкан — комплекс, термохимия ] оА[1глексов карбамида и кинетика процессов их образования и разложения. Открыто явление низкотемпературного гистерезиса, связанного с механизмом образования и разложения комплексов и термодинамическими характеристиками процессов перекристаллизации мочевины и адсорбции — десорбции включенного вещества. [c.13]

    Для Сб( Нзб определены фундаментальные термодинамические характеристики теплоемкость в интервале температур О - 340 К и стандартная мольная энтропия, энтальпии образования и сублимации и рассчитаны термодинамические функции. Энтальпия разрыва связи С-Н в гидрофуллерене оказалась равной 255.4 0.8 кДж/моль, что указывает на ее высокую реакционную способность. [c.132]

    Гельмгольца) — свободной энергии, термодинамического потенциала — ничего не остается, как переупаковаться параллельная укладка макромолекул приведет к образованию жидкокристаллической, анизотропной (нематической) или более сложной фаз, все термодинамические характеристики которых подобны таковым низкомолекулярного жидкого кристалла [22]. [c.38]

    По-видимому, впервые образование свободных атомов водорода было установлено И. Лэнгмю-ром (19П) по увеличению теплопроводности водорода, окружающего нагретую вольфрамовую нить. Позже Вуд (1920) предложил метод получения атомов Н, основанный на применении тлеющего разряда при давлениях около 0,5 мм рт. ст. Мы ограничимся только тем, что приведем основные термодинамические характеристики реакции ( .175), т. е. [c.150]

    Проведите расчет термодинамических характеристик реакций термического ра ложения, термоокислительного пиролиза и конверсии нормальных углеводородов С1...С5 парами воды, газа и диоксидом углерода с образованием в результате реакций алкенов, алкинов, диенов, оксида углерода и водорода (синтез-газ). В таблицах приведите тепловые эффекты, измене1пш энергии Гиббса реакций, степени превращения веществ и равновесные составы газовой смеси в зависимости от температуры в пределах от 248 до 1500 К и давления в пределах от 1 до 100 атм. [c.26]

    Зная геометрические характеристики молекул и рассчитан, как описано в предыдущем разделе, частоты нормальных колебаний, можно рассчитать термодинамические характеристики молекул и образованных ими систем при требуемой температуре. Наиболее важные из них — энтальпия и энтропия. Вычисление этих функщ1Й производят на основе известных соотнощений статистической механики. [c.171]


Смотреть страницы где упоминается термин образования термодинамические характеристики: [c.241]    [c.82]    [c.300]    [c.49]    [c.68]    [c.213]    [c.98]   
Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте