Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вычислительные вывода

    Согласно принципу Ле-Шателье на повышение температуры пластовая нефтегазовая система должна реагировать процессом, направленным на ее понижение, т. е. процессом отвода тепла. Отсюда можно придти к выводу, что хотя действительные процессы в нефтяных и газовых пластах протекают в экзотермическом направлении, повышение температуры в нефтегазовой системе всегда смещает равновесие в эндотермическом направлении. Полученные путем экспериментально-вычислительных работ величины Кр для однофазной пластовой жидкости и различных бинарных систем в пласте могут иметь большое значение для планирования промысловой работы по добыче нефти. [c.112]


    По записям регулирующих приборов, просмотренным после взрыва, установлено, что через закрытый, но дающий утечку верхнего продукта клапан из колонны медленно просачивались содержащиеся в ней вещества. Потеря бутадиена из системы через клапан приводила к существенным изменениям состава жидкости в нижней части колонны и увеличению в ней содержания винилацетилена до концентрации примерно 60%. Потеря жидкости из нижней части колонны способствовала обнажению трубы испарительной камеры (кипятильника). Увеличение концентрации винилацетилена в кубовой жидкости и высокая температура стенок трубы вызвали взрыв. Расследование происшедшей аварии в Техас-Сити с применением вычислительных машин, исследования, проведенные на модельной установке, расчеты условий процесса и режима работы позволили сделать следующие выводы  [c.140]

    Полученные методами вычислительного эксперимента результаты позволяют сделать вывод о том, что рассмотренные потенциалы межмолекулярного взаимодействия приводят к качественно правильному описанию свойств воды в объемной фазе. Для того чтобы избежать растянутого состояния, достаточно увеличить плотность числа частиц, что слабо сказывается на рассчитанных значениях структурных и энергетических характеристик водных систем. Анализ показывает [339], что это заключение справедливо и для ряда других моделей. Поэтому выбор потенциала межмолекулярного взаимодействия для описания молекулярно-статистических характеристик воды определяется, в основном, минимумом времени, затрачиваемого на расчет энергии взаимодействия в системе. Кроме того, для сопоставления результатов, полученных при различных внешних условиях, необходимо использовать одну и ту же модель. [c.121]

    Алгоритм и логический вывод. Имеется существенное различие между описанной выше структурой системы вывода и традиционными вычислительными системами с иерархически организован- [c.46]

    В такой ситуации выработка оптимального решения возможна только с применением интеллектуальных вычислительных систем. Применяя логические правила вывода, смысловую информацию представляют в виде семантических сетей, фреймовых структур и т. д., в результате чего строится машинная база знаний экспертной системы, с которой должен работать исследователь и разработчик контактно-каталитического процесса. [c.124]

    Многоуровневый иерархический подход с позиций современного системного анализа к построению математических моделей позволяет предсказывать условия протекания процесса в аппаратах любого типа, размера и мощности, так как построенные таким образом модели и коэффициенты этих моделей позволяют корректно учесть изменения масштаба как отдельных зон, так и реактора в целом. Конечно, данный подход весьма непрост в исполнении. Чтобы сделать его доступным для широкого круга специалистов, необходимо сразу взять ориентацию на использование интеллектуальных вычислительных комплексов, которые должны выполнять значительную часть интеллектуальной деятельности по выработке и принятию промежуточных решений. Спрашивается, каков конкретный характер этих промежуточных решений Наглядные примеры логически обоснованных шагов принятия решений, позволяющих целенаправленно переходить от структурных схем к конкретным математическим моделям реакторов с неподвижным слоем катализатора, содержатся, например, в работе [4]. Построенные в ней математические модели в виде блоков функциональных операторов гетерогенно-каталитического процесса совместно с дополнительными условиями представлены как закономерные логические следствия продвижения ЛПР по сложной сети логических выводов с четким обоснованием принимаемых решений на каждом промежуточном этапе. Каждый частный случай математической модели контактного аппарата, приводимый в [4], сопровождается четко определенной системой физических допущений и ограничений, поэтому итоговые математические модели являются не только адекватными объекту, но обладают большой прогнозирующей способностью. Приведенная в работе [4] логика принятия промежуточных решений при синтезе математических описаний гетеро- [c.224]


    Система управления ОКП реализована на базе технического и информационного обеспечения АСУ ТП АЗОТ , предназначенной для контроля и управления технологическим процессом в крупно-тоннажных агрегатах синтеза аммиака, и является одной из ее подсистем. АСУ ТП АЗОТ представляет собой централизованную систему, в состав которой входят пульты операторов-технологов, традиционные системы автоматического регулирования, обеспечивающие измерение и стабилизацию основных параметров процесса, а также двухмашинный управляющий вычислительный комплекс с устройствами ввода—вывода, связи с объектом и средствами представления информации. [c.339]

    При организации работы интеллектуальной системы принятия решений в режиме оперативного управления предусматривается наличие двух контуров выводов рекомендаций — быстрого и медленного . В быстром контуре система использует метод поиска на экспертных моделях, описанных языком логики предикатов первого порядка. Метод основан на процедуре поиска резольвент. Последнюю в системе реализует дедуктивный решатель, входящий в состав планировщика-интерпретатора. Эта процедура позволяет быстро оценивать ситуации и выводить качественные решения. Медленный контур использует только вычислительные модели. Незапланированные флюктуации режима, аварийные [c.347]

    Техника локальных вычислительных сетей создает условия для построения на унифицированной основе наращиваемых многомашинных вычислительных систем с модульной развиваемой и адаптивной структурой, подключением функционально-ориентированных, специализированных, универсальных и высокопроизводительных средств сбора, обработки, хранения и ввода-вывода информации. Создание распределенных вычислительных сетей качественно изменяет процесс переработки информации благодаря наличию таких возможностей, как создание единого центрального или нескольких основных банков данных обеспечение оперативного обмена информацией с центральным банком данных, со всеми ЭВМ сети, обрабатывающими устройствами и подсистемами использование вычислительных ресурсов всех подключенных к сети ЭВМ для распределенного решения задачи дублирование вышедших из строя вычислительных средств одновременная параллельная обработка одной задачи на нескольких ЭВМ и сопоставление результатов обработки для обеспечения высокой надежности решения задачи доступность технических средств, что снимает необходимость иметь все ресурсы на каждом вычислительном устройстве или в каждой подсистеме реконфигурация и программная настройка структуры вычислительной сети на тип и класс решаемой задачи автономизация подсистем или отключение их от сети нри выходе из строя [13]. [c.70]

    Современные вычислительные средства представляют собой программно-технические комплексы, комплектуемые исходя из класса решаемых задач. Логическая структура ЭВМ позволяет изменять набор как технических, так и программных средств по мере накопления опыта работы. Изменение конфигурации ЭВМ обеспечивается стандартными устройствами обмена — каналами. Функциональная связь устройств ЭВМ представлена на рис. 6.1. К каналам процессора через стандартную схему сопряжения (интерфейс ввода-вывода) подсоединяются внешние устройства. Взаимодействие всего комплекса обеспечивается устройством управления, расположенным в процессоре. [c.241]

    Автоматизированное рабочее место. Широкое распространение получают специализированные вычислительные комплексы на базе мини-ЭВМ, к которым относятся и диалоговые графические системы (АРМ), предназначенные для выполнения операций, связанных с вводом-выводом, редактированием графической и текстовой информации. Разработаны и серийно выпускаются комп- [c.243]

    При пакетной обработке на входе вычислительной системы имеется пакет (набор) заданий, последовательно выполняемых ЭВМ. Каждое задание может использовать все ресурсы системы за исключением некоторого объема оперативной памяти, постоянно занимаемой резидентной частью ОС. Пакетный режим работы позволяет исключить простои процессора за счет отстранения пользователя от ЭВМ (задания выполняются автоматически по управляющим операторам ОС) и частичного совмещения операций ввода-вывода и работы процессора. Однако [c.248]

    Алгол-60 предназначен для решения задач вычислительной математики и содержит средства, позволяющие записывать алгоритмы в форме, близкой к обычной записи в математике. Программа на Алголе состоит из описаний и операторов. Описания предназначены для характеристики обрабатываемой информации (тип переменных, объем данных), а операторы — для записи вычислительной части алгоритма. Помимо операторов ввода—вывода в языке используется восемь операторов, каждый из которых по определенным правилам может записываться различно.  [c.31]

    Вычислительные ситуации связаны с обработкой данных, с различного рода вычислениями, а ситуации ввода — вывода — с передачей данных. Каждая из них является защитной реакцией операционной системы или устройства па возможное нарушение [c.332]

    В обобщенную специальную программу моделирования ХТС входят подпрограмма ввода исходной информации подпрограмма математических моделей элементов системы основная исполнительная подпрограмма подпрограмма массива информации о физико-химических константах и физических свойствах компонентов и смесей подпрограмма оптимизации и прогнозирования возможных технологических режимов подпрограмма обеспечения сходимости вычислительных операций подпрограмма вывода результатов. [c.324]


    Во время отыскания ошибок должен предусматриваться вывод достаточного количества промежуточной информации, анализ которой позволил бы установить момент нарушения нормального хода вычислительного процесса. [c.42]

    Перед печатью информация заносится в буферный накопитель устройства вывода, содержащий 128 семиразрядных ячеек (по одной ячейке на каждый символ). После заполнения буферного накопителя печатающее устройство работает независимо от вычислительной машины в течение 150 мсек, в это время машина продолжает выполнение следующих команд программы. По окончании вывода строки выдается сигнал готовности печатающего устройства к приему информации для следующей строки. [c.472]

    Автоматизированный вывод системы дифференциальных, интегральных или конечных уравнений (линейных, нелинейных, с сосредоточенными или распределенными параметрами). Эта процедура реализуется на основании характеристических функциональных соотношений диаграммных элементов. 2. Автоматизированное построение блок-схем вычислительных алгоритмов математического описания ФХС на основании специальной системы блок-схемных эквивалентов соответствующая система формализаций ориентирована на применение современных операционных систем и языков программирования (например, типа РЬ-1). 3. Построение сигнального графа ФХС (если это необходимо) на основании специальной системы сигнал-связных эквивалентов. [c.21]

    Для математического моделирования в настоящее время характерна машинно-ориентированная формализация и автоматизация как самой постановки задачи, так и всех процедур, связанных с ее реализацией на вычислительной машине. При этом вычислительная техника используется не только на этапе решения уже готовых уравнений, описывающих объект, но и на этапах физико-химического, гидромеханического, термодинамического обоснования математического описания, вывода системных урав- [c.3]

    Создание диаграммного метода описания ФХС, совмещающего наглядность и простоту структурного представления технологических объектов, основные достоинства аналитического аппарата дифференциального и интегрального исчисления и широкие возможности в формализации и автоматизации процедур, связанных с выводом системных уравнений, построением блок-схем алгоритмов решения уравнений и реализацией этих алгоритмов на вычислительных комплексах. [c.19]

    Различают цифровые вычислительные машины (ЦВМ) и аналоговые вычислительные машины (АВМ), а также их комбинацию в виде гибридной вычислительной системы [2481. ЦВМ выдает результаты в виде цифровых таблиц, в АВМ результаты выводят ся в виде изменяющихся во времени напряжений, которые раз личными способами могут быть изображены в графической форме Подробные сведения о методах математической обработки с по мощью ЭВМ можно найти в специальной литературе [248, 249  [c.191]

    Многочисленные расчеты показали, что в большинстве случаев для оптимизационных задач характерна пологость изменения приведенных затрат при приближении к оптимуму (пологость функции цели в области экстремума). Это свойство называется экономической устойчивостью систем и их элементов. Из него следует два важных вывода. Во-первых, в зоне равной экономичности решений, существенно различных по своим техническим параметрам, при выборе оптимального решения обязателен глубокий технико-экономический анализ преимуществ и недостатков возможных вариантов. Во-вторых, в вычислительной процедуре оценки экономичности вариантов возможны упрощения без риска потерять подлинно экономичное решение. [c.157]

    ПВА — продукционно-вычислительный алгоритм ПВР — подсистема вывода решений ПЗ — представление знаний [c.21]

    Для систем ФР определенной конструкции вводится вычислительный процесс, в основе которого лежит выбор ФР, управляющих затем дальнейшими вычислениями. В языке KRL в основе такого процесса лежит сопоставление с образцом для выбора ФР и дальнейшее сопоставление выбранных фреймов с исходными данными и уже построенными ФР-примерами, в ходе которого осуществляется достраивание модели конкретной ситуации. Задача сопоставления в процессе вычислений разбивается на подзадачи в соответствии со структурой ФР, участвующих в сопоставлении осуществляется иерархическое планирование решения этих подзадач с использованием критерия ограниченности ресурсов, расширяемых пользователем сигнальных таблиц и вывода процедур, присоединенных к слотам ФР. Основные операции такого процесса — копирование ФР и отождествление переменных и объектов. При выполнении этих операций в соответствии со структурой участвующих в них ФР может потребоваться выполнение новых операций копирования и отождествления, и т. д. [c.132]

    На рис. Vni.19 даны зависимости веса каждого слоя катализатора и полной массы всего катализатора от стоимости предварительного подогрева. Линию для Wg в этом масштабе нельзя начертить действительно, в предельном случае х = О оптимальные массы находятся в отношении И д = 1 9 ООО 130000, что заставляет задуматься над тем, стоит ли делать реактор многостадийным. Для двухстадийного реактора, как следует из рис. VIII.19 (для N = 2), пропорции более разумны (самое большее 1 20). Рис. VIII.20 показывает, что уменьшение числа стадий очень слабо влияет на максимальное значение критерия оптимальности Р. Десятикратное увеличение стоимости катализатора v приводит к почти десятикратному уменьшению его оптимальной массы и небольшому комненсируюш ему увеличению температуры, однако максимальное значение критерия оптимальности Р уменьшается при этом только на 10%. Такого рода расчеты оптимальных режимов на вычислительных машинах позволяют понять обш,ую структуру оптимальных решений даже в том случае, когда не представляется возможным точно оценить величины (х и v. Например, тот факт, что общая масса катализатора уменьшается почти в том же отношении, в каком увеличивается его стоимость, свидетельствует о том, что общие расходы на катализатор всегда остаются почти постоянными. Непропорционально малая масса катализатора в одном из адиабатических слоев, вычисленная при оптимальном расчете, сразу заставляет сделать вывод, что рационально проектировать реактор с меньшим числом стадий. [c.246]

    Прежде чем этот вывод настроит читателя на чересчур оптимистичный лад, отметим, что рост эффективности системы по большей части мог бы произойти благодаря обычной, значительно менее формальной ее настройки и отладки, что характерно для развития большинства систем обработки информации. Дело в том, что, хотя и верно, что программирование на вычислительных машинах скорее искусство, чем наука, высококвалифицированных и знающих программистов очень много. Тем не менее развитие эротетической логики сулит существенно большую выгоду. [c.149]

    Эффективный подход к разработке интерактивной диалоговой системы для решения задач химической технологии, обеспечи-ваюш ей организацию вычислительного процесса и ведение диалога на языке, близком по синтаксису к профессиональному языку химика-технолога предложены в [4, 5]. Структурная схема данной системы приведена на рис. 6.2. Она состоит из подсистемы проектирования (анализа и синтеза ХТС), включаюш,ей функциональную среду (ФС) и банк данных (БД), и подсистемы диалогового взаимодействия, включающей семантические модели БД и ФС, блоки лингвистического и логического анализа. Связь между подсистемами осуществляется на уровне интерпретатора /, ввод— вывод происходит посредством дисплея. Блок лингвистического анализа выполняет обработку входного предложения, а блок логического анализа предназначен для управления семантическими моделями БД и ФС. [c.257]

    Для математического моделирования ХТС используют специальные программы ц и ф р о в о г о м о д е л и р о в а н и я (СПЦМ), построенные по блочному илн декомпозиционному принципу. Обобщенная функциональная схема СПЦМ ХТС состоит из следующих блоко.в (рис. П-7) 1—блок ввода исходной информации 2 —блок математических моделей типовых технологических операторов или модулей 3 —блок определения параметров физико-химических свойств технологачесних потоков и характеристик фазового равновесия 4 —блок основной исполнительной программы 5 —блок обеспечения сходимости вычислительных операций 6 — блок оптимизации и расчета характеристик чувствительности ХТС к изменению пара-метров элементов (технологических операторов) системы 7 — блок изменения технологической топологии ХТС 8 — блок расчета функциональных характеристик ХТС 9 —блок вывода результатов. [c.53]

    УСО, имеющее широкий набор специализированных быстродействующих аналогово-цифровых и цифро-аналоговых преобразователей информации позволяет использовать УВМ для сбора данных о технологических процессах объекта и для автоматического управления объектом. УСО обеспечивает возможность подключения к УВМ дополнительной специальной аппаратуры связи исследователя с вычислительной машиной электронно-лучевые осциллографы с киносъемочной аппаратурой, устройства ввода графической информации, графопостроители, координатографы, телевизионные экраны и т. д. Связь исследователей с головным промышленным образцом объекта удобно осуществлять, подключив к УСО пульты оперативной связи, оборудованные устройствами вывода информации на телевизионные экраны или электронно-лучевые трубки. Информация о результатах эксперимента может быть представлена на экранах в виде цифр, таблиц, отдельных фраз, графиков, гистограмм, диаграмм и т. п. [c.120]

    Вычислительные машины серий ЕС ЭВМ и АСВТ в наибольшей степени удовлетворяют требованиям, которые предъявляются к техническим средствам АСПХИМ. Благодаря агрегатному принципу построения и унифицированной системе внешних связей машины серий ЕС ЭВМ и АСВТ позволяют строить ИВС различной конфигурации и изменять их конфигурацию путем доукомплектования ИВС нужными устройствами без изменения остального оборудования и программ. Работа центрального процессора в этих машинах совмещается по времени с работой внешних устройств, что позволяет повысить эффективное быстродействие ИВС возможность мультипрограммной работы позволяет подключа.ть специальные внешние устройства ввода— вывода информации — графопостроители, координатографы и дисплеи, не занимая практически времени процессора на их обслуживание. В этих машинах ряд удобств для программирования сложных задач проектйрова--ния химических производств дает большой набор универсальных команд (в том числе команды обработки символьной информации и возможность работы с операндами переменной длины). Развитая система аппаратного контроля обеспечивает достоверность результатов счета, что намного облегчает программирование при использовании ЭВМ этих серий в АСПХИМ. [c.132]

    Общепринятым подходом к разработке систем, в рамки которого укладываются разработки практически всех известных систем, является выделение отдельных подсистем с жестким функциональным подчинением. Обобщенная структура такой системы приведена на рис. 4.15. Анализ систем показывает, что основными фазами являются ввод, предпроцессорная обработка, вычислительная фаза, вывод. [c.149]

    Помимо отдельных элементов, выпускаются комплексные-системы машинной графики, в состав которых входят собственные мини-ЭВМ, алфавитно-цифровые и графические дисплеи, устройства сопряжения с центральной ЭВМ или информационно-вычислительной сетью, средства ввода и вывода графической информации и внешние накопители (на кассетах или гибких дисках). Такие универсальные системы или автоматизированные рабочие места операторов получили специальное название торики (turnkey), что означает полностью готовый и сданный в эксплуатацию объект. Они снабжаются полной совокупностью необходимого программного обеспечения. [c.239]

    Повышения эффективности использования вычислительной системы можно достигнуть, во-первых, за счет сокращения времени простоя процессора и, во-вторых, за счет сокращения времени ожидания решения в режиме пакетной обработки. Классическим примером повышения производительности ЭВМ является многопрограммный режим, или мультипрограммирование. Идея этого метода состоит в том, что ЭВМ настраивается на одновременное выполнение ряда задач, каждая из которых занимает часть оперативной памяти. Поскольку большинство внешних устройств может работать в автономном режиме после загрузки соответствующего канала, то совмещением работы внешних устройств и процессора можно достигнуть максимальной загрузки последнего. Как только одна из программ приостанавливается для выполнения, например, операции ввод-вывода, процессор переключается на выполнение другой программы, тем самым исключается время его ожидания. Разделам памяти присваиваются уров ни приоритетности, которые и определяют последовательность переключения программ. Этот режим не предполагает непосредственного доступа пользователя к ЭВМ, так как в каждом разделе памяти производится пакетная обработка программ. Однако за счет лучшего использования оборудования время ожидания решения обычно сокращается по сравнению с однопрограммным режимом. Разновидностью режима мультипрограммирования является параллельная обработка, идея которой состоит в том, что переход от одной программы к другой производится в результате естественного прерывания (ожидания ввода-вывода) и вынужденного переключения через короткие промежутки времени, сравнимые со скоростью работы процессора. При параллельной обработке программы выполняются по очереди в короткие промежутки времени и создается впечетление их одновременного выполнения, тем более что результаты расчета выдаются пользователю по мере завершения каждой из них. [c.249]

    Как следует из рис. 7.4, з общей задаче моделирования химико-техпологического процесса функции пользователя ограничиваются постановкой задачи моделирования и составлением математического описания. Последнее должно быть представлено в виде, пригодном для ввода в систему. В частности, описание должно быть представлено в матричном виде. Пакет программ является незамкнутым, поэтому пользователь имеет возможность вносить любые изменения и дополнения в общую схему моделирования на языке системы. Это, прежде всего, ввод исходных данных и вывод результатов решения, включение функций управления вычислительным процессом и (при необходимости) форсирующих процедур для ускорения решения. Следовательно, необходимо иметь опыт программирования на рабочем языке пакета, в качестве которого обычно используются процедурно-ориентированные языки типа фортрана, ПЛ-1. Совершенствование методов формализации составления математического описания объекта позволяет еще в большей степени автоматизировать процесс моделирования. [c.273]

    В однопрограммном режиме ЭВМ одновременно выполняет только одну задачу и все ресурсы ее находятся в распоряжении этой задачи. В мультипрограммном режиме вычислительная машина одновременно может выполнять несколько независимых задач, т. е. может выполняться несколько программ, относящихся к различным задавшям. Б этом случае ресурсы ЭВМ (память, внешние устройства, программное обеспечение) распределяются операционной системой между этими заданиями. Мультипрограммный режим организуется за счет неодинакового быстродействия отдельных устройств ЭВМ. Так, например, выполнение арифметических операций процессором в десятки и сотни тысяч раз быстрее, нежели вывод данных на печать. [c.196]

    Все ситуации подразделяются на вычислительные и ввода — вывода. Имеется еще ситуация действия системы — ситуация ERROR, которая появляется как следствие стандартного действия системы на другие ситуации. Список этих ситуаций и краткое описание приведены в табл. 5.9. [c.332]

    Поскольку в структуре Алгола имеются операторы для органиэаадш циклических расчетов, то вычислительная часть программы будет содержать два оператора цикла для вычисления знаменателя формулы и расчета мольных концентраций компонентов. Сюда же будут включены и операторы ввода исходных данных и вывода результатов вычислений. [c.49]

    Вычислительная часть программы состоит из трех операторов оператора ввода исходных данных, обращения к процедуре и оператора вывода результатов. Результатом решения является массив значений вязкостей смеси VISMIX при различных Г и Р. [c.122]

    Рассмотрим подробно вычислительную процедуру определения производных (IV, 12) при применении указанных методов. Попутно сравним данные методы друг с другом и с методом вычисления производных (IV,12) по соответствующим разностям с точки зрения удобства программирования, требумой памяти и количества операций при их реализации на вычислительных цифровых машинах. Не ограничивая общности выводов, сравнение проведем на примере вычисления производных (IV,45). [c.121]

    В расчете по данному алгоритму с начальным приближением для управля-юш ей переменной (I, г) = 523 и Енач= 0,5 через 20 итераций (что вместе с выводом результатов на цифровой вычислительной машине БЭСМ-6 заняло 160 с) удалось достигнуть оптимального температурного режима и> (I, I) (см. рис. 75 и 76). Вычислительная программа была выполнена на языке алгол-60. Характер сходимости функционала к оптимуму имел вид кривой на рис. 77, а. Первоначальный участок малого изменения величины Р, по-видимому, определялся выбором 8нач- Для оптимального температурного режима значение функционала/ = 0,498. Расчет с другим начальным приближением г) = 500) через 23 итерации привел к тому же самому температурному режиму ш (г, г). [c.215]


Смотреть страницы где упоминается термин Вычислительные вывода: [c.237]    [c.263]    [c.459]    [c.108]    [c.249]    [c.253]    [c.57]    [c.50]    [c.118]    [c.52]    [c.6]   
Методы кибернетики в химии и химической технологии (1985) -- [ c.130 ]




ПОИСК





Смотрите так же термины и статьи:

ЭВМ электронно-вычислительные машины внешние и устройства ввода вывода



© 2024 chem21.info Реклама на сайте