Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение жидких систем перегонкой

    Роль процессов изотермической перегонки, коагуляции и коалесценции в нарушении агрегативной устойчивости дисперсных систем различна, прежде всего, в зависимости от фазового состояния дисперсионной среды. Коагуляция, коалесценция и седиментационное разделение свойственны системам с легкоподвижной (жидкой или газовой) дисперсионной средой. Изотермическая перегонка может иметь место при любом фазовом состоянии дисперсионной среды, в том числе и твердом, где этот процесс является единственным механизмом изме- [c.240]


    Диаграмма температура — состав для неограниченно смешивающихся жидкостей. Одним из способов разделения смеси жидкости на составные части является перегонка. Перегонка основывается на том, что состав пара над жидкой смесью при температуре ее кипения, как правило, неоди наков с составом взятой смеси. Соотношения между составами разновесных жидкостей и пара и влияние добавления того или другого из компонентов на общее давление пара устанавливает первый закон Д. П. Коновалова (1881) над двойной жидкой системой пар по сравнению с находящейся с ним в равновесии жидкостью относительно богаче тем ком-нентом, прибавление которого к системе повышает общее давление пара, т. е. понижает температуру кипения смеси при данном давлении. На диаграмме температура кипения — состав смеси (рис. 26) нижняя кривая отвечает составу кипящей жидкости, верхняя — составу пара над кипящей смесью. Рассмотрим состав, отвечающий точке Е. Температура кипения его t. Состав пара при температуре характеризуется точкой Р. Спроектировав точки Е п Р на ось состава, можно убедиться в том, что в парах находится легколетучего компонента В больше (точка С , чем в жидкой смеси (точка Сх). Соответственно высококипящего компонента А больше в жидкой фазе. При повышении содержания данного вещества в жидкой смеси увеличивается его содержание в парах. Если полученный пар (точка Р) сконденсировать в жидкость и снова нагреть до кипения (точка О), то образуется пар, еще более богатый компонентом В (точка Сз). В результате многократного повторения таких операций можно обогатить пар легкокипящей жидкостью. В остатке будет накапливаться высококипящая малолетучая жидкость. [c.107]

    Выделение, очистка и разделение веществ сорбционными методами может быть осуществлено в виде статического процесса, когда в системе устанавливается равновесие между растворенным веществом на взвешенном в растворе адсорбенте, и в виде динамического процесса или процесса, осуществляемого в сорбционных колонках. Оба метода широко применяются для аналитического и препаративного разделения и выделения антибиотиков, а также в производстве последних. Наиболее известным процессом первого типа является адсорбция стрептомицина из культуральной жидкости на активированном угле. Ко второму типу относится распространенный процесс сорбции того же антибиотика на карбоксильных смолах. В настоящее время процессы первого типа ( статические ) в подавляющем большинстве случаев уступают место колоночным процессам. Это объясняется рядом причин, из которых две Являются решающими, а именно увеличением емкости сорбции веществ при переходе от статического процесса к динамическому [1] и возможностью значительного усиления разделяющей способности сорбционного метода при переходе к динамическому процессу. Эффективность последнего равна эффективности серии сорбционных одноактных процессов, повторенных сотни, а иногда и многие тысячи раз, подобно тому как метод ректификации разделения жидких смесей значительно более эффективен по сравнению с простой перегонкой. [c.54]


    Следует отметить, что регенерация третьего компонента, хлористого метилена, из его раствора с метанолом также является проблемой разделения азеотропа, и в этом основной недочет описанного метода. Однако, если третий компонент, прибавляемый с целью разделения азеотропической смеси, образует тройной азеотроп с компонентами системы, кипящий при более низкой температуре, чем исходный, и при этом, получаемый в виде дестиллата тройной азеотроп является гетерогенным в жидкой фазе, то благодаря тому, что при расслоении жидкости получаются фазы с весьма широко различающимися составами, можно с выгодой использовать этот процесс. Это делается, например, при обезвоживании этилового алкоголя его перегонкой с бензолом. [c.149]

    Перегонка — процесс разделения жидких смесей, достигаемый испарением части исходной жидкой смесн. Перегонка реализуется при наличии паровой и жидкой фаз в системе. [c.216]

    На различии в равновесных составах жидкой и паровой фаз основано разделение неограниченно растворимых жидкостей перегонкой. На диаграмме кипения верхняя линия /д/ц выражает зависимость температуры конденсации пара от его состава. Нижняя линия /д/в выражает зависимость температуры кипения раствора от его состава. Диаграмма двумя линиями разделена на три поля. Поле / — область существования пара (С = 2 — 1 + 1 =2) поле 2 — область существования жидкости (С = 2 — 1 + 1 =2), системы однофазны, имеют по две степени свободы, т. е. произвольно можно задавать температуру и состав без нарушения равновесия поле 3 характеризует двухфазное состояние системы (пар и жидкость) с одной степенью свободы (С = 2--2+1 = 1), т. е. произвольно можно задавать только один параметр. Каждой температуре кипения соответствуют определенные составы жидкой и паровой фаз. Любая фигуративная точка в поле 3 (например, точка а) отражает валовый (общий) состав системы. Чтобы найти составы фаз, необходимо провести изотерму через точку а. Состав жидкой фазы определяется точкой / (Хв = 0,2), паровой — точкой 2 (уд = 0,6). Пар обогащен компонентом В. Согласно закону Коновалова, прибавление легколетучего компонента В в исходный раствор, например до состава х , вызывает понижение температуры кипения исходной жидкости (от <1 до /г). При изотермическом изменении валового состава системы (от х = 0,4 до Хв = 0,5, что на диаграмме соответствует перемещению фигуративной точки а в точку Ь) число фаз и их составы остаются прежними (лр = 0,4 у = 0,6), но происходит [c.95]

    Изучая различные устойчивые растворы, Д. П. Коновалов (1881) сделал следующее обобщение, получившее название первого закона Коновалова насыщенный пар по сравнению с равновесным раствором относительно богаче тем компонентом, добавление которого к системе повышает полное давление пара. Первый закон Коновалова является теоретической основой для разделения жидких растворов на исходные компоненты путем фракционной перегонки. [c.78]

    Ряд особенностей расчета колонн для азеотронной перегонки вызывается тем, что приходится иметь дело с фазовыми равновесиями жидкость — пар в реальных системах, сильно отклоняющихся от идеальной. Число теоретических тарелок, необходимых для разделения данной системы, наиболее целесообразно определять расчетом по тарелкам. Уравнения и зависимости, выведенные для этого определения, в данном случае неприменимы вследствие весьма значительных различий относительной летучести. В литературе описан алгебраический метод [34] расчета минимальной кратности орошения для азеотропной системы. Другой метод вычисления минимальной кратности орошения при азеотропной перегонке основывается [31] на расчете по тарелкам в секции питания колонны. Для этого используют уравнения, определяющие равновесие жидкость — пар для тройной азеотропной системы, путем построения зависимости между относительными летучестями трех пар компонентов п отношением концентраций этих компонентов в жидкой фазе. [c.130]

    Перегонка — процесс разделения жидких (газовых, паровых) смесей путем испарения (конденсации) части исходной жидкой-(газовой, паровой) смеси. Перегонка реализуется при наличии паровой (газовой) и жидкой фаз в системе. [c.191]

    При перегонке с дефлегмацией образующиеся пары конден — сируют и часть конденсата в виде флегмы подают навстречу потоку пара. В результате однократного контактирования парового и жидкого потоков уходящие из системы пары дополнительно обогащаются низкокипящими компонентами, тем самым несколько повышается четкость разделения смесей. [c.161]

    Процессы азеотропической перегонки применяются не только для разделения однородных в жидкой фазе азеотропов, но и для разделения систем компонентов с очень близкими точками кипения, ректификация которых обычными методами, вследствие близости коэффициента относительно летучести к единице, оказывается весьма затруднительной. В этом случае третий компонент должен образовать с одним из компонентов системы гомогенный или гетерогенный азеотроп, кипящий при более низкой температуре, чем низкокипящий компонент исходной бинарной системы, и играющий роль верхнего продукта фракционирующей колонны. [c.138]


    Перегонка гомогенных азеотропов начальной концентрации хь, совпадающей с концентрацией постоянно кипящей смеси, бесполезна для разделения компонентов раствора, ибо выкипание жидкой и конденсация паровой системы будут проходить при неизменном составе у обеих фаз. Если же начальная концентрация Х[ отличается от азеотропной, то составы паровой п жидкой фаз различаются, и перегонка позволяет достигнуть определенной степени разделения. [c.102]

    При рассмотрении постепенной перегонки было указано, что в этом периодическом процессе чистый НКК системы может получаться лишь с последним пузырьком конденсирующегося пара, а чистый ВКК — лишь с последней каплей перегоняющейся жидкости. Совмещение периодического процесса постепенной перегонки жидких систем с ректификацией выделяющихся паров позволяет обойти эти трудности и получить целевые продукты разделения в конечных количествах и с практической чистотой, иногда близкой к 100%. [c.219]

    Совершенно очевидно, что наиболее правильным путем разгонки системы типа о будет ее подогрев до температуры насыщения с дальнейшим разделением в отстойнике обоих жидких слоев и последующим их раздельным испарением, что исключит перегонку двухслойной жидкой фазы, лишенную всякого практического смысла. [c.49]

    Другой, имеющий общее значение метод разделения однородных азеотропов, заключается в уничтожении точки касания равновесных линий пара и жидкости путем прибавления третьего компонента. Влияние третьего компонента заключается в изменении молекулярной природы раствора, результатом чего является соответствующее изменение относительных летучестей его компонентов, позволяющее осуществить процесс разделения системы на ее практически чистые составляющие. Процесс разделения однородной в жидкой фазе постоянно кипящей системы с помощью прибавления к ней третьего компонента входит в группу процессов, называемых азеотропической перегонкой. [c.138]

    TOB — химических веществ, наличие которых необходимо и достаточно для характеристики составов и свойств каждой фазы. Так, при разделении нефти перегонкой или ректификацией система состоит из двух фаз — паровой и жидкой. При этом каждая фаза может включать десятки (узкие бензиновые фракции, газообразные продукты) и сотни (исходная нефть, мазут и др.) компонентов. [c.230]

    Способность ограниченно смешивающихся жидкостей образовывать гетероазеотропы используется для разделения азеотропных смесей в системах с неограниченной взаимной растворимостью компонентов. Так, азеотропная-смесь в системе пиридин — вода, содержащая 57% пиридина и кипящая при 365 К, методом перегонки не может быть разделена на чистые компоненты. Однако если к такой азеотропной смеси добавить бензол, который образует с водой гетероазеотроп, кипящий при более низкой температуре (342 К), то при перегонке водных растворов пиридина в присутствии бензола можно получить чистый пиридин, а вода вместе с бензолом в виде гетероазе-отропа перейдет в дистиллят. Диаграмма на рис. 139 отвечает системе, в которой гетероазеотроп не образуется. В такой системе во всем интервале концентраций пар богаче жидкости компонентом Б, имеющим более низкую температуру кипения при заданном давлении. Такие системы характеризуются тем, что состав пара (точка О), равновесного с жидкими растворами (точки С и D), не является промежуточным между составами жидких растворов. Кроме того, температура равновесной трехфазной системы не будет самой низкой температурой, при которой существует равновесие пар—жидкость. Систему с ограниченной взаимной растворимостью компонентов второго типа перегонкой можно разделить на два чистых компонента. Примерами систем данного типа могут служить системы вода — фенол, гексан — анилин, вода — никотин, бензол — ацетамид, метанол — тетраэтил-силан и др. [c.398]

    Постепенное испарение и постепенная конденсация. Эти процессы осуществляются так, что пары, образовавшиеся при испарении (или жидкость при конденсации), удаляются из системы непрерывно в момент их образования. Образовавшиеся в системе паровая и жидкая фазы всегда находятся в состоянии равновесия. Процессы постепенного испарения и конденсации можно рассматривать как предельный случай многократного процесса при бесконечно большом числе ступеней разделения. Примером процесса постепенного испарения является перегонка из куба периодического действия. [c.84]

    Перегонка является весьма удобным способом выделения и очистки продуктов реакции. -Разделение смеси жидкостей перегонкой возможно тогда, когда образующийся при перегонке пар имеет другой состав по сравнению с жидкостью Д. П. Коновалов установил законы, характеризующие соотношения между составами равновесных жидкостей и пара. Согласно первому закону Д. П. Коновалова, повышение относительного содержания данного компонента в жидкой фазе всегда вызывает увеличение относительного содержания его в парах. При этом в двухкомпонентной системе пар [c.27]

    Перегонка — весьма удобный способ выделения и очистки продуктов реакции. Разделение смеси жидкостей перегонкой возможно тогда, когда образующийся при перегонке пар имеет другой состав по сравнению с жидкостью. Д. П. Коновалов установил законы, характеризующие соотношения между составами равновесных жидкостей и пара. Согласно первому закону Д. П. Коновалова повышение относительного содержания данного компонента в жидкой фазе всегда вызывает увеличение относительного содержания его в парах. При этом в двухкомпонентной системе пар (по сравнению с находящейся с ним в равновесии жидкостью) относительно богаче тем из компонентов, прибавление которого к системе повышает общее давление пара, т. е. понижает температуру кипения смеси при данном давлении. В качестве примера приведены кривые зависимости состава пара от состава жидкости для смеси бензол — толуол (рис. 34, а). [c.28]

    По физическому смыслу методы разделения смесей при их частичной кристаллизации аналогичны методам перегонки, когда система пар-жидкость и процессы частичной конденсации и испарения аналогичны системе жидкость - кристаллы и процессам частичной кристаллизации и растворения. По аналогии с перегонкой отношение концентраций в равновесных кристаллической и жидкой фазах (а) называют коэффициентом разделения. [c.299]

    Для разделения бинарных или многокомпонентных смесей на 2 компонента достаточно одной простой колонны (если не предъявляются сверхвысокие требования к чистоте продукта). Для разделения же многокомпонентных непрерывных или дискретных смесей на более чем 2 компонента (фракции) может применяться одна сложная колонна либо система простых или сложных колонн, соединенных между собой в определенной последовательности прямыми или обратными паровыми или (и) жидкими потоками. Выбор конкретной схемы и рабочих параметров процессов перегонки определяется технико-экономическими и технологическими расчетами с учетом заданных требований по ассортименту и четкости разделения, термостабильности сырья и продуктов, возможности использования доступных и дешевых хладоагентов, теплоносителей и т.п. [c.196]

    Итак, в процессе испарения жидкой двухслойной начальной системы происходит разделение жидкого слоя Л, состава ха, на две части паровую, состава е, более богатую компонентом а, и жидкую, состава хв, менее богатую компонентом а, чем поглощающийся слой А. Не вдаваясь глубже в механизм провсходящего явления, для целей установления закономерностей процесса перегонки двухслойной жидкости неэвтектического типа, вполне достаточно представлять испарение в этой системе, как прогрессивное поглощение жидкой фазы Л, вследствие ее непрерывного разделения на пар состава уе и жидкость состава Хв, присоединяющуюся к жидкой фазе В. [c.53]

    Роль процессов изотермической перегонки, коагуляции и коалесценции в нарушении агрегатшзной устойчивости дисперсных систем различна и зависит прежде всего от фазового состояния дисперсионной среды. Коагуляция, коалесценция и седиментационное разделение свойственны системам с легкоподвижной (жидкой или газовой) дисперсионной средой. Изотермическую перегонку можно производить при любом фазовом состоянии дисперсионной среди, в том числе и твердом, где этот процесс является единственным механизмом изменения дисперсности. В системах с легкоподви2кной средой роль изотермической перегонки в уменьшении дисперсности часто мала. Однако если по каким-либо причинам коагуляция и коалесцешщя в таких системах существенно затруднены и особенно если вещество дисперсной фазы хорошо растворимо в дисперсионной q>eдe, то именно изотермическая перегонка может определять скорость разрушения дисперсной системы. В реальных условиях, ког да в дисперсной системе происходят колебания температуры, процессы переконденсации вещества от малых частиц к крупным могут заметно ускоряться. [c.288]

    На рис. 16 представлена схема установки для разделения жидкого сырья, содержащего более 25,0% мол. н-бутанола, на н-бутанол заданной чистоты п воду. Это разделение является типичным примером процесса перегонки двухкомпонентной системы, образующей гетерогенный азеотроп. Поскольку жидкое сырье представляет собой две несмешивающиеся жидкие фазы, его можно направить в отстойник, где бутанольная фаза отделяется от водной фазы, образуя верхний слой. Бутанольную фазу подают на верх бутанольной колонны, из которой очищенный бутанол выводят в качестве остатка, а отбираемый с верха колонны пар, по составу близкий к гетерогенному азеотропу, направляют в конденсатор. Водная фаза из отстойника поступает в водную колонну, [c.127]

    Описание устройства для фракционного разделения жидких смесей представлено в работе [17]. Изобретение относится к аппаратам для вакуумной перегонки жидкости в заводских или лабораторных условиях. Устройство для фракционного разделения жидких смесей содержит испаритель систему подачи разделяемой жидкой смеси, системы удаления пара и кубового остатка. Новым в устройстве является исполнение испарителя в виде полого корпуса, в полости которого размещены 2 двухоболочковых тора перемещаемых посредством гибких тел пропущенных сквозь сердцевины торов друг к другу. При этом пространство между торовыми оболочками, разделено кольцевой перегородкой, образуя 2 полости, которые заполнены газообразной средой под разным давлением, а полость внутреннего тора заполнена жидкостью, а системы функционирования испарителя подачи жидкости по торцам корпуса. [c.97]

    Совмещение процесса простой перегонки с ректификацией выделяющихся паров позволяет обойти эти трудности и получить целевые продукты разделения в конечном количестве и с практической чистотой, как угодно близкой к 100%. С этой целью над перегонным кубом, в который загружается исходная жидкая система, устанавливается укрепляющая колонна, специально предназначенная для ректификации отгоняемых паров, поднимающихся из куба (фиг. 104). Пары с верхней тарелки колонны отводятся в парциальный конденсатор, где образуется поток орошения, стекающий обратно в колонну и создающий условия для контакта фаз и барботажа на тарелках. В ходе перегонки жидкости, загруженной в куб, ее состав и состав паров, поступающих в колонну, непрерывно утяжеляются прогрессивно выделяющимся низкокипящим компонентом. Тем не менее вполне возможно в течение длительного периода перегонки получать с верха укрепляющей колонны дестиллат постоянного состава, отвечающий практически чистому низкокипящему компоненту. Достигается этот важный результат непрерывным изменением, в частности увеличением, количества тепла, отнимаемого в конденсаторе колонны, или, иначе говоря, непрерывным увеличением количества орошения, пода- [c.362]

    Пусть дана система двух частично растворимых друг в друге веществ второго, неэвтектического типа, разделенная на два жидких слоя, находящихся в равновесии с их общим паром, при точке кипения под заданным постоянным внешним давлением. Из рассмотрения изобарных кривых кипения и конденсации этой системы, представленных на фиг. 16, можно заключить, что пока в системе присутствуют оба жидких слоя, как температура кипения, так и составы обоих жидких слоев и выделяемого пара останутся в ходе испарения неизменными. Единственно, по мере перегонки исходной двухфазной жидкости будет изменяться ее совокупный состав а, передвигаясь на горизонтальном участке АВ существования трехфазной равновесной системы по направлению к точке В до полного исчезновения фазы А состава ха, которое наступит в момент, когда совокупный состав жидкой фазы сравняется с составом лв слоя В. [c.53]

    Процесс состоял из первичного разделения в колонне для азеотропной перегонки, регенерации аммиака в специальной установке, удаления диацетилена при помощи специальной системы и окончательного отделения бутадиена в перегонном кубе. Очищенный бутадиен получался в колонне для азеотропной перегонки в виде остатков с примесью небольшого Количества гомологов ацетилена. Другие углеводороды отгонялись в виде йзео-тропных смесей с аммиаком. При охлаждении погон азеотропной перегонки разделялся на две жидкие фазы, после чего фаза с большим содержанием аммиака поступала в виде орошения обратно в Колонну. Углеводородная фаза повторно перегонялась для получения оставшегося в ней аммиака. Если в исходном продукте находились пропаны, то при использовании этого метода восстановления разделяющего агента возникали трудности из-за высокой упругости пара пропанов. Другой метод восстановления разделяющего агента заключается в промывке отогнанного продукта водой. [c.133]

    Таким образом, последовательность выделения фракций из нефти с ПОМОЩЬЮ сжатых газов противоположна той, которая имеет место при обычной термической перегонке нефти. Фракции, выделяющиеся в сосудах (от второго до восьмого), отличаются друг от друга по фракционному составу, плотности, молекулярной массе и содержанию серы. В ряде случаев наблюдается прямолинейная зависимость плотности фракции от давления конденсации. Отличие жидкостей, выпавщих в разных сосудах установки, по фракционному составу примерно такое же, какое наблюдается между фракциями при обычной лере-гонке нефти, осуществляемой без дефлегмации. Такой характер разделения связан с однократностью процессов растворения и конденсации в установке. Кроме того, известно, что газо-жидко-стное равновесие при высоких давлениях характеризуется большей близостью составов газовой и жидкой фаз системы, чем при низких давлениях. [c.100]

    Дробная перегонка. Дробная перегонка является способом разделения гомогенной смеси жидких веществ, имеющих различную температуру кипения. Б основе этого метода лежит закон, сформулированный Д. П. Коноваловым, по которому в двухкомпонентной гетерогенной системе пар относительно богаче тем компонентом, [c.31]

    Затраты на разделение включают весьма многочисленные статьи. Помимо затрат на энергию, необходимо учитывать амортизацию требуемого оборудования, восполнение йотерь растворителя или адсорбента, расходы на эксплуатационный персонал, на ремонт и запасные части. Вследствие высокого совер-шества методов контактирования газа с жидкостью, легкости внутрицехового транспорта жидкостей но сравнению с твердыми материалами и высокой эффективности разделения наиболее дешевыми методами разделения являются методы, основанные на контакте газа и жидкой фазы, во всех случаях когда они применимы. Однако еслй для разделения с применением системы газ — жидкость необходим дорогостоящий растворитель, сложность процесса и затраты на него резко увеличиваютсй. В таких случаях может оказаться более целесообразным применение экстракции жидкости жидкостью. Часто она более экономична, чем экстрактивная или азеотропная перегонка. [c.50]

    Цростой перегонкой таких систем возможно получить азеотроп в качестве головного погона и в зависимости от состава сырья бензол или циклогексан в качестве остатка. Например, если сырье содержит 20% мол. бензола, то фракционированием возможно получить азеотроп и чистый циклогексан. Если же сырье содержит 80% мол. бензола, то даже в идеальных условиях его можно разделить только на азеотроп и чистый бензол. В любом случае азеотроп отгоняется как головной погон, так как он кипит при минимальной для данной системы температуре. Простое фракционирование даже в колонне с большим числом теоретических тарелок не позволяет осуществить дальнейшее разделение азеотронной смеси, так как в этом случае пар и равновесная с ним жидкая фаза имеют одинаковый состав. Однако добавка дополнительного растворителя, например фенола, позволяет преодолеть эту трудность. Такой метод разделения подробно рассмотрен в разделе Экстрактивная перегонка . [c.116]

    Фракционированная перегонка при низких температурах является одним из методов получения очень чястого водорода из смесей. Этот процесс был разработан главным образом для получения водорюда из шдяного газа (смеси водорода, главным образом, с окисью углерода), но он был видоизменен для получения водорода из светильного газа или из газа доменных печей. Один из методов разделения составных частей газа доменных печей путем фракционированной перегонки описал Bronni , Газ, предварительно освобожденный от двуокиси углерода последовательным промыванием водой под давлением в 12 ат и раствором едкого натра, подвергается предварительному охлаждению до —30° и даже I10 — 50° путем теплообмена с газами, уходящими из системы. Затем газ входит в камеру разделения, где от подвергается дальнейшему охлаждению уже разделенными газами. Таким обр азом конденсируются все газы за исключением водорода, азота и части окиси углерода. Затем остаточный газ, все еще находящийся под давлением около 10 ат, пропускается через трубки, погруженные в баню, содержащую жидкий азот, испаряющийся под уменьшенным давлением. Это вы- [c.254]

    Гёлер и Смит [30], изучая диссоциацию паров водной хлорной кислоты в процессе вакуумной перегонки, обнаружили, что при определенных условиях температуры и давления в специальной аппаратуре хлорная кислота может быть получена непосредственно путем вакуумной перегонки ее дигидрата. Для этого 73,6%-ную кислоту нагревают в перегонной колбе, снабженной дефлегматором с внешним водяным охлаждением и форштоссом, устроенным так, что жидкость не попадает обратно в перегонную колбу, а стекает в отдельный приемник и в дальнейшем процессе не участвует. Верхний конец дефлегматора через ловушки, охлаждаемые жидким воздухом, соединяется с вакуумной системой. В горле перегонной колбы имеется патрубок, через который в прибор во время перегонки подается струя сухого воздуха. При давлении 12—-15 мм рт. ст. и температуре 1I0—120° С в дефлегматоре происходит разделение паров по фракциям раствор состава 71—72% H IO4 конденсируется и стекает в приемник, концентрированная же кислота конденсируется в холодной ловушке. Выход кислоты редко достигает 10%, причем состав ее колеблется между 97 и 98%. С понижением давления до 7 мм рт. ст. вы-.код падает до 2%. [c.45]


Смотреть страницы где упоминается термин Разделение жидких систем перегонкой: [c.17]    [c.653]    [c.162]    [c.121]    [c.185]    [c.177]    [c.104]    [c.1188]    [c.473]   
Основные процессы и аппараты химической технологии Изд.7 (1961) -- [ c.546 , c.556 ]

Основные процессы и аппараты химической технологии Издание 5 (1950) -- [ c.502 ]

Основные процессы и аппараты химической технологии Издание 6 (1955) -- [ c.521 ]




ПОИСК







© 2024 chem21.info Реклама на сайте