Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перехода плотность

    Существенные изменения претерпевает вещество при высоких внешних давлениях. Так, при давлениях порядка 10 —10 Па уменьшаются расстояния между атомами в кристаллической решетке, разрушаются химические связи. При этом создаются условия для возникновения новых связей, соответствующих более плотной кристаллической структуре вещества. Широко известными примерами подобного рода полиморфных превращений при сверхвысоком давлении является переход графита в алмаз, нитрида бора в боразон, кварца в новую модификацию (стишовит) с плотностью, на 60% большей, чем у природного кварца, и др. В настоящее время возможность таких полиморфных превращений начинает широко использоваться в технике для получения синтетических твердых и сверхтвердых веществ.  [c.124]


    В ретортном отделении цеха одной из ответственных операций производственного процесса является пуск реторты. Наиболее опасен переход к подогреву реторты генераторным газом после разогревания камеры горения дровами. Зажигание генераторного газа, подаваемого в недостаточном количестве, может привести к взрыву в камере горения. При нормально установившемся горении газа реторту постепенно и равномерно обогревают в течение нескольких суток, повышая ежесуточно температуру на 50—60 С. Сухой древесный уголь загружают при 775—780 °С. После загрузки необходимо тщательно протереть края загрузочного люка и создать наибольшую плотность прилегания крышки, чтобы предотвратить проникновение газообразного сероуглерода в производственное помещение и загорание его при соприкосновении с горячей поверхностью реторты. [c.92]

    Аммиак (NHз)—бесцветный горючий газ с резким характерным запахом. Молекулярная масса 17,03 плотность в сжиженном состоянии 681,4 кг/м при температуре кипения температура плавления 77,75°С, температура кипения — 33,4°С растворимость в воде 34,27о (масс.). Газообразный аммиак при охлаждении под атмосферным давлением до температуры ниже —33,4°С или при температуре 15 С и давлении выше 0,75 МПа переходит в жидкое состояние. Жидкий аммиак — бесцветная подвижная жидкость. При температуре —77,7°С жидкий аммиак превращается в белые кристаллы. [c.24]

    Определить перенапряжение перехода, плотность тока обмена, коэффициент переноса для катодного процесса, а также коэффициент диффузии ионов цинка, если п = 2 И / = — 100 мА-см-2. Реакцию считать одностадийной. [c.137]

    Фольмер и Викк для малых катодных и анодных перенапряжений на платине, иридии и золоте подтвердили уравнение (2. 15), получив кривые, подобные изображенным на рис. 49. На рис. 211 представлены поляризационные кривые. Здесь имеет место только перенапряжение перехода. Плотность тока обмена имеет наибольшую величину на иридии г,, = 12,5 мка-см , для платины г, [c.579]

    В настоящей работе, наряду с оценкой фазовых изменений в твердых и мягких парафинах, полученных по совмещенной схеме депарафинизации и обезмасливания, была предпринята попытка найти зависимость между температурой фазового перехода, плотностью и температурой плавления парафинов с целью использования этой зависимости для характеристики и классификации нефтяных парафинов. [c.354]


    Вещество Mj., а.е.м. Фазовые переходы Плотность Получение [c.152]

    Его дезактивирующее действие выражается в создании пространственных затруднений при адсорбции углеводородов на активных центрах контакта. При значительных количествах сульфатной серы на носителе происходят фазовые превращения, обусловленные переходом определённого количества оксида алюминия в сульфат, плотность которого в 1,5 раза ниже. Эти переходы сопровождаются перестройкой структуры носителя и уменьшением размера транспортных пор, -и это снижает механическую прочность катализатора и ухудшает условия массообмена. [c.55]

    При удалении от равновесного потенциала (увеличении плотности тока) линейная связь переходит в полулогарифмическую  [c.397]

    Для других металлов, например для свинца и платины, в некоторой области плотностей тока наблюдается переход к новой полулогарифмической прямой с измененным значением й и с тем же (свинец) или иным (платина) значением коэффициента Ь (см. [c.398]

    В уравнениях (2.16) учтено, что истинная плотность материалов фаз может изменяться в процессе движения за счет изменения составов при фазовых переходах. В тех случаях, когда при движении частиц изменяется их размер за счет растворения, кристаллизации, испарения, конденсации и т. д., возникает необходимость использовать уравнение сохранения числа частиц, которое при отсутствии процессов дробления и коагуляции частиц имеет вид  [c.64]

    За внешней плоскостью Гельмгольца располагается диффузный слой с потенциалом, изменяющимся от г )г до нуля и с плотностью заряда, совпадающей с <72. Схематическое изображение строения двойного слоя по Грэму для незарял енной поверхности, заряженной отрицательно п положительно, дано на рис. 12.5. В соответствии с допущением Грэма о том, что следует считаться лишь с поверхностной активностью анионов (в системах, не содержащих органических растворенных веществ), в первой плоскости Гельмгольца находятся только специфически адсорбирующиеся анионы, причем их поверхностная концентрация растет при переходе от незаряженной поверхности (рис. 12.5, а) к заряженной положительно (рнс. 12.5, б). Грэм подчеркивает, чго это увеличение концентрации следует отнести прежде всего за счет упрочнения ковалентной связи, а не за счет сил кулоновского взаимодействия. При достаточно отрицательном заряде поверхности (рис. 12,5, в) во внутреннем слое Гельмгольца остается лишь растворитель, и заряд его, так же как н в растворе, не содержащем поверхностно-активных [c.271]

    Это объясняется тем, что энергия ядерных переходов зависит от распределения электронной плотности вокруг ядра, т. е. в зависимости от вида соединения для возбуждения ядерных переходов требуются различные энергии. Однако поскольку влияние природы химического окружения атома на смещение ядерных энергетических уровней сравнительно мало, можно добиться резонансного поглощения 7-квантов, несколько изменив их энергию. Для этого достаточно перемещать источник (или поглотитель) 7-излучения относительно приемника (источника) излучения. В этом случае энергия [c.148]

    Для протекания элементарного акта реакции необходимо, чтобы орбитали взаимодействующих частиц перекрывались и создавались условия для перехода электронов с занятых орбиталей на свободную, т. е. создавались условия для перераспределения электронной плотности — разрыва старых связей и образования новых. Рассмотрим механизм реакции между Hj [(ст ) (оГ ) ] и [...( 1лГ) ( Г Т]-Допустим, молекулы Н и сталкиваются, как показано на рис. 116, а, т. е. сочетание орбиталей происходит на оси z. Это отвечает следующим комбинациям орбиталей  [c.199]

    Согласно общепринятой классификации типовых процессов химической технологии, процессы, связанные с переносом тепла, подразделяются на два больших подкласса с фазовыми переходами и без таковых. Не вдаваясь в особенности каждого из них отметим, что сайт процессов первого подкласса сосредоточен на границе теплопередающей поверхности, второго — на границе растущего парогазового пузыря. Различия между этими процессами определяются термодинамической плотностью теплового потока. [c.157]

    Если поток неньютоновский (ламинарный), то это означает, что имеются неупругие процессы, которые превращают энергию движущихся пластин в тепловую энергию. Это в свою очередь приведет к тому, что внутри газа возникнут градиенты плотности и температуры. Во всех случаях такие градиенты существуют и происходит переход тепла возле стенок, но для малых скоростей такие градиенты обычно малы. [c.156]

    Количественно опишите изменение температуры и плотности при прохождении ударной волны через такой газ, как СН4, в котором переход вращательной и колебательной энергий в анергию поступательного движения незначителен. Какое влияние на прохождение ударной волны окажет диссоциация на Н и СН3  [c.587]


    Уровни катализатора в отпарной секции и реакторе регулируются нижним клапаном. Водяной пар подается в отпарную секцию в таком количестве, чтобы слой катализатора в ней был менее плотный, чем в реакторе. Вследствие разности плотностей катализатор переходит через прорези перегородки из реактора в отпарную секцию. Для нормальной работы весьма важно, чтобы катализатор не накапливался в одних зонах за счет опорожнения других. [c.134]

    СОМ будет ионизация адсорбированного водорода с переходом его в раствор. Таким образом, эта область потенциалов отвечает только стадии разряда (при катодном толчке) и ионизации (при анодном толчке), что позволяет исследовать кинетику одной этой стадии без наложения осложняющих эффектов, связанных с процессами рекомбинации или диссоциации молекул водорода. Изучение зависимости емкости двойного слоя и омического сопротивления (эквивалентного торможению па стадии разряда) от частоты наложенного тока в этой области потенциалов позволило Долину, Эрш-леру и Фрумкину впервые непосредственно измерить скорость акта разряда. Параллельные поляризационные измерения при небольщих отклонениях от равновесного потенциала, где неренапряжение еще линейно зависит от плотности тока, дали возможность найти скорость суммарного процесса и сопоставить ее со скоростью стадии разряда. Было установлено, что акт разряда протекает с конечной скоростью, причем ее изменение с составом происходит параллельно изменению скорости суммарной реакции. В то же время скорость стадии разряда всегда больше, чем скорость суммарной реакции (в 27 раз в растворах соляной кислоты и в И раз в растворах гидроксида натрия). Таким образом, акт разряда хотя и протекает с конечной скоростью, но не определяет скорости всего процесса выделения водорода на гладкой платине и не является здесь лимитирующей или замедленной стадией. [c.416]

    Водяной пар подается в отпарную секцию р таком количестве, чтобы слой катализатора в ней был менее плотный, чем в реакто ) Вследствие разности плотностей катализатор переходит черев прорези перегородки из реактора в отпарную секцию. [c.181]

    Под общим понятием механизма реакции в настоящее время подразумевают процессы столкновения реагирующих частиц, перераспределения электронной плотности в них и другие элементарные стадии с учетом в каждом отдельном акте возможно более точной стерео-химической картины перехода от реагентов к продуктам [c.9]

    Согласно уравнениям электромагиптного поля вид матричных элементов оператора поля определяется матричными элементами плотпости тока частиц, соответствующих переходам частиц из одного состояиия в другое 15]. Для разреженной плазмы в отсутствие сильных полей состояиия частиц можпо описывать плоскими волнами, а матричный элемент перехода плотности тока частицы сорта а, соответствующий переходу из состояний п в состояние т, имеет ИНД [c.309]

    В качестве примера на рис. 2.16 представлены эти величины для я л и п -> я -переходов в формальдегиде (см. также рис. 2.11). Можно видеть, что при я-> я -переходе изменяется распределение зарядов в молекуле этому изменению соответствует конечный момент пёрехода. В случае же п я -перехода плотность перехода Ч Кя н, следовательно, момент перехода равны нулю. [c.43]

    Прп равновесном потенциале такое соотношение достигается благодаря тому, что одни и те же частицы с одинаковой частотой переходят из электрода в раствор и из раствора на электрод. Для цинкового электрода такими частицами являются ионы цинка. Устойчивость подобного динамического равновесия определяется интенсивностью обмена, т. е. плотностью тока в двух противоположных иаиравлениях  [c.290]

    Уко11 = /а = 0), коэффициент торможения — бесконечности, а степень защиты—100%. Плотность тока, обеспечивающая полную катодную защиту, называется защитным током /з. На рис. 24.8 ему соответствует отрезок сс1. Величина защитного тока не зависит от особенностей протекания данной анодной реакции, в частности от величины сопровождающей ее поляризации, а целиком определяется катодной поляризационной кривой. Так, напрнмер, прн переходе от водородной деполяризации к кислородной сила защитного тока уменьшается и становится равной предельному диффузионному току (отрезок ей на рис. 24.8). [c.503]

    Осуществление процессов переноса сопровождается сопротивлением, которое сосредоточено в областях, примыкающих к поверхностям, через которые такой перенос осуществляется. Эти области принято называть пограничными. Толщина пограничных слоев (8) по масштабу сравнима с масштабами флуктуаций характеристик переносимой субстанции (5 << Ь). В рамках феноменологической теории термодинамики перенос рассматривают как процесс рассасывания флуктуаций [254]. Плотность СИЛ сопротивления переносу в пограничных слоях тем выше, чем толще пограничный слой и чем медленнее развитие процесса в нем. В связи с этим следует согласиться с высказыванием Г. А. Кардашева ...по мере перехода от процессов на макроуровне к процессам на микроуровне масштаб воздействия должен понижаться... [282]. [c.154]

    Индуктивный эффект трифторметильной группы значительно больше, чем алкильных групп, и действует в противоположном направлении. Здесь электронная плотность в п-полон<ении должна быть наиболее высокой и должна снижаться при переходе к -цолонгению наименьшая плотность должна быть в о-положепии. Поэтому о-положение должно быть наиболее чувствительным к атаке нуклеофильных агентов, а ж- и п-положепия будут следовать за ним в указанном порядке. Это находится в полном соответствии с наблюдениями [265]. [c.475]

    Кремниевая кислота Н2510з легко образует пересыщенные растворы, в которых она постепенно полимеризуется и переходит в коллоидное состояние — гель. При его высушивании образуется пористый продукт — силикагель. Размер и распределение пор, форма зерен силикагеля зависят от технологии его производства. Отечественная промышленность выпускает силикагели марок КСМ, МСМ, ШСК. Первая буква марки силикагеля указывает на размер зерен К — крупный (2,7—7 мм), М — мелкий (0,25— 2 мм), Ш — шихта (1,5—3,6 мм) последняя буква —на пористость силикагеля М — мелкопористый К — крупнопористый. Косвенной характеристикой размера пор может служить насыпная плотность у мелкопористого она достигает 700 г/л, у круп-нопористого — 400—500 г/л. Удельная поверхность пор в зависимости от марки составляет 100—700 м /г. Механическая прочность выше у мелкопористого силикагеля. Качество силикагеля зависит, кроме того, от содержания примесей. Наличие в составе силикагеля оксидов металлов (алюминия, железа, магния и т, п.), являющихся активными катализаторами, вызывает нежелательные явления при регенерации — разложение адсорбированных веществ, образование смол, кокса и т. д., что резко снижает активность силикагеля. [c.89]

    Уравнение (7-54) можно разделить на А, исключив таким образом поверхность трения, и получить отношение перехода импульса на единицу поверхнос1И к конвективной плотности импульса. Это отношение представляет безразмерное характерное число (критерий) для данного случая  [c.95]

    Образование капель. В процессе образования капель, как и в процессе образования пузырей, можно вьщелить три основных режима , зазистатический, динамический и струйный. Вследствие того, что плотность жидкости значительно превьппает плотность газа, переход в струйный режим при диспергировании жидкостей происходит при значительно меньших скоростях истечения (0,2-0,4 м/с), чем при диспергировании газа. В связи с этим струйный режим истечения в промышленных аппаратах с системами жидкость—жидкость является [c.55]

    Вертокалы1ый дисперсный поток при медленно изменяющемся размере частиц. Рассмотрим стационарное течение дисперсной системы, в которой в результате фазового перехода происходат изменение объема частиц. Будем предполагать, что при этом форма частиц остается близкой к сферической, монодисперсной состав частиц не нарушается, а изменением плотностей фаз можно пренебречь. Система уравнений сохранения массы дисперсной и сплошной фаз и числа частиц в этом случае будет иметь вид  [c.100]

    Переход от едгшиц системы СГС к единицам системы СИ и обратно весьма прост, так как эти единицы различаются множителем, кратным десяти. Например, для единиц массы 1 кг = 10 г, плотности—1 кг 1 = 0- г см и т, д. [c.22]


Смотреть страницы где упоминается термин Перехода плотность: [c.352]    [c.178]    [c.22]    [c.60]    [c.276]    [c.310]    [c.364]    [c.374]    [c.479]    [c.480]    [c.480]    [c.484]    [c.77]    [c.40]    [c.423]    [c.301]   
Квантовая механика молекул (1972) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте