Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент трения, направленность

    Вопрос о влиянии скорости пара на теплообмен при конденсации на вертикальной охлаждаемой стенке впервые теоретически был исследован Нуссельтом. Задачу решали для случая ламинарного течения пленки конденсата в предположении постоянства скорости парового потока вдоль поверхности конденсации, что позволило пренебречь падением давления на поверхности и внутри слоя пленки, а также изменением касательного напряжения трения на границе раздела фаз в направлении парового потока. При выводе расчетных зависимостей Нуссельт исходил также из постоянства коэффициента трения между паром и пленкой конденсата (С/п = 0,00515) и не учитывал влияние поперечного потока массы-конденсирующегося пара на изменение касательного напряжения. В результате была получена следующая зависимость для отношения коэффициентов теплоотдачи при движущемся и неподвижном паре  [c.133]


    С появлением первых простейших механизмов человек встретился с явлениями трения и износа. Было замечено, что на преодоление сил трения требуется затрата значительной энергии, поэтому сразу же начались поиски способов и средств снижения этих затрат и уменьшения износа трущихся деталей. При этом человеческая мысль стала развиваться по двум направлениям подбор более прочных, износостойких конструкционных материалов с малым коэффициентом трения и применение различных смазочных материалов. По мере развития и усложнения техники совершенствовались и оба направления. Возникла наука о трении и износе. Однако, уделяя достаточно много внимания различным тонкостям взаимодействия твердых трущихся поверхностей, она относительно мало занималась изучением влияния качества смазочных материалов на трение и износ двигателей и механизмов. [c.7]

    Если в горизонтальном расположении КСП будет иметь место скольжение слоя то, вследствии вертикального направления силы тяжести, оно в любом сечении будет происходить в плоскости перпендикулярной оси КСП независимо от степени заполнения в любом сечении, то есть независимо от того был ли уровень сыпучей массы в КСП по всей его длине одинаковым или разным. Поступательного движения материала при этом быть не может, иоо нет силы, хотя бы в качестве слагаемой, направление которой этому бы способствовало. При этом, вообще, можно думать о скольжении, если коэффициент трения сыпучего материала (угла трения), а значит и угол подъема слоя при вращении, меньше угла естественного откоса. [c.69]

Рис. 5.15. Кажущийся коэффициент трения для кольцевого двухфазного течения, направленного вертикально вниз. Рис. 5.15. <a href="/info/10634">Кажущийся коэффициент</a> трения для <a href="/info/942513">кольцевого двухфазного</a> течения, направленного вертикально вниз.
Фиг. 137. График изменения коэффициента трения в зависимости от пути относительного перемещения при испытании образцов со следами механической обработки 1 — параллельными 2 — перпендикулярными к направлению их движения. Фиг. 137. График <a href="/info/1648901">изменения коэффициента трения</a> в зависимости от пути относительного перемещения при <a href="/info/223082">испытании образцов</a> со <a href="/info/1510270">следами механической</a> обработки 1 — параллельными 2 — перпендикулярными к направлению их движения.

    Сила 2Р sin а, действующая от двух валков по вертикали, направлена вверх и стремится вытолкнуть материал. Под влиянием этой силы в местах соприкосновения материала с валками возникает сила трения F = Pf (f—коэффициент трения), направленная вниз под углом 90° к силе нормального давления Р. [c.27]

    А. С. Ахматов рассматривает формирование граничных смазочных слоев как одно из явлений кристаллизации. Граничные слои, по мнению А. С. Ахматова, представляют собой моно- или поликри-сталлические тела, возникающие за счет зародышевой функции первичного слоя. Смазочные материалы в очень тонких слоях под двусторонним влиянием поверхностей трущихся металлов обнаруживают исключительные антифрикционные свойства. Молекулы смазочных веществ в граничных слоях обеспечивают достаточно большую прочность на сжатие и легкость сдвигов в горизонтальном направлении. Этим и объясняются небольшие коэффициенты трения при скольжении смазанных поверхностей. Тонкие смазочные слои могут не только в значительной степени снижать силу трения, но и оказывать большое влияние на величину износа. Причем, как показали исследования П. А. Ребиндера. Б. В. Дерягина и др., во многих случаях смазка, достаточно интенсивно снижающая силу трения, может значительно увеличивать износ. [c.131]

    Схема действия силовых факторов на кусок материала, находящийся на наклонной поверхности сита, приведена на рис. 7.11. Короб расположен так, что сила инерции направлена в сторону уклона сита. На кусок действуют также сила тяжести mg и сила трения / mg os а — sin а), где / — коэффициент трения т — масса куска g —ускорение свободного падения а —угол наклона сита. При направлении силы инерции Р в сторону уклона (на рис. 7.11 влево) условие сдвига куска вниз имеет вид [c.213]

    Потери на трение в кольцевом канале вычисляются по обычным критериальным уравнениям, причем в качестве характерного размера принимается эквивалентный диаметр. Коэффициенты трения для оребренных труб почти идентичны коэффициентам для случая течения во внутренней трубе во всех режимах течения, кроме переходного. Местные потери, обусловленные переменной направления потока в и-образной трубе, составляют половину скоростного напора, рассчитанного ио скорости в кольцевом канале. Потери давления во входных патрубках часто бывают весьма существенными. [c.21]

    Коэффициент теплоотдачи и коэффициент трения зависят от расстояния между трубами. Существует так много вариантов расположения труб, как поперек, так и в направлении потока, что необходимо большое количество [c.61]

    Применение высокомодульных волокон позволяет получить минимальную скорость изнашивания при относительно легких условиях трения. Максимальный коэффициент трения наблюдается у композитов, у которых волокно располагается перпендикулярно поверхности трения (примерно 0,27), минимальный (примерно 0,18) при направлении осей УВ параллельно этой поверхности. [c.628]

    Сила сопротивления Р, направленная противоположно относительному перемещению тел, называется силой трения. Различают трение скольжения и трение качения. Коэффициент трения скольжения / — это безразмерная величина, равная отношению силы трения к силе N нормального давления. Изучением твердых тел занимался еще Леонардо да Винчи, который установил, что сила [c.353]

    Изучено влияние ориентации молекул поверхностного слоя на коэффициент трения. Мерой ориентации служило вентильное действие — способность поверхностного слоя выпрямлять проходящий переменный ток, обусловленная существованием Дф (понижающего работу выхода электронов в одном направлении и повышающего — в другом). Одновременные измерения .1 и доли выпрямленного тока проходящего через контакт с нанесенной смазкой при движении металлического ползунка по металлической основе, производили при разных скоростях движения V. Получен- [c.114]

    Изучено влияние ориентации молекул в поверхностном слое на коэффициент трения. Мерой ориентации служило вентильное действие — способность пленки выпрямлять проходящий ток, обусловленная существованием Дф (понижающей работу выхода электронов в одном направлении и повышающей — в другом). Опыты показывают, что величина р, оказывается наименьшей при максимальной ориентации и снижается тем сильнее, чем совершеннее ориентация молекул поверхностного слоя. [c.107]

    Изменение коэффициента трения образцов со следами механической обработки на трущихся поверхностях в зависимости от пути их относительного перемещения по характеру и величине примерно одинаково для случаев перемещения образцов в направлении, параллельном и перпендикулярном к следам их обработки (фиг. 137). [c.159]

    Основные механизмы переноса при смешанно-конвективном течении в трубах некруглого сечения остаются такими же, как и в круглых трубах. Разности температур вызывают возникновение выталкивающих сил и формируется вторичное течение, накладывающееся на основной поток. Оно начинает развиваться вблизи входного сечения трубы и становится интенсивнее ниже по потоку. Когда температура жидкости приближается к температуре стенки, оно ослабевает. При ламинарном режиме это вторичное течение вызывает интенсификацию теплообмена. В работе [23] впервые проведен анализ полностью развитого с самого начала ламинарного смешанно-конвективного течения в горизонтальных трубах прямоугольного сечения. Предполагалось, что стенка трубы имеет высокую теплопроводность, плотность теплового потока на стенке постоянна в осевом направлении, а температура стенки равномерна по периметру трубы. Были получены численные решения для степеней удлинения сечения 7 = 0,2 0,5 1 2 и 5 при Рг = 0,73. Для труб квадратного сечения расчеты были выполнены и при Рг = 7,2. Показано, что и коэффициент трения, и тепловой поток возрастают при увеличении Ре Ра. Для заданного значения Ре Ра максимальные величины коэффициента трения и теплового потока до- [c.648]


    Движущей силой диффузии является отрицательный градиент химического потенциала, а сдерживающей силой — коэффициент трения умноженный на скорость и. Таким образом, если химический потенциал изменяется только в направлении х, то [c.356]

    В параграфе 1.4.3 отмечалось, что коэффициент трения является функцией числа Ке. Этот факт не случаен, ибо это число определяет режим движения жидкости, который, в свою очередь, оказывает существенное влияние на величину напряжений трения. Действительно, при ламинарном режиме частицы жидкости, двигаясь вдоль стенки без перемешивания, не участвуют в обмене количеством движения между двумя соседними слоями. Перенос количества движения из одного слоя в другой осуществляется на молекулярном уровне, и скорость в направлении радиуса трубопровода возрастает медленно (рис. 1.34). В случае турбулентного режима перемешивание частиц жидкости приводит к более быстрому возрастанию скорости, так как к молекулярному переносу количества движения добавляется молярный, то есть перенос крупными частицами (молями). [c.53]

    Винтовая нарезка червяка обеспечивает и деформирование материала и его непрерывное перемещение вдоль цилиндра от воронки к головке. В дозирующей зоне червяк служит элементом винтового насоса здесь материал дополнительно гомогенизируется и находится в пластичном и вязкотекучем состоянии. В четвертой зоне материал формуется в заготовку того или иного профиля. Решающим фактором для перемещения материала в червячной машине является его взаимодействие с поверхностью червяка и цилиндра. В зоне загрузки большое значение имеет величина коэффициента трения между материалом и поверхностью цилиндра. Чтобы материал мог перемещаться вдоль оси червяка, коэффициент трения материала на поверхности червяка должен быть по возможности мал, а коэффициент трения материала на поверхности цилиндра достаточно велик. Если это условие не выполняется, то материал может вращаться вместе с червяком, не перемещаясь в направлении головки. Благоприятный режим работы машины в загрузочной зоне достигается выбором соответствующей геометрии винтовой нарезки червяка, формы загрузочного отверстия в цилиндре, обработкой поверхности червяка и цилиндра, а также подбором нужных тепловых и скоростных параметров технологического процесса. [c.175]

    Фрикционный износ характерен для высокоэластичных материалов, проявляется в скатывании и возникает при механическом повреждении и разрушении поверхности резины при трении об относительно гладкую поверхность контртела. Фрикционный износ является самым интенсивным и происходит при относительно высоком коэффициенте трения между истирающей поверхностью и резиной. При сильном трении в результате местной деформации истираемой поверхности появляются складки и выступы, разрушение начинается с возникновения трещин, перпендикулярных направлению растягивающего усилия там, где поверхностные слои находятся в сложнонапряженном состоянии и при наибольшем растяжении. Рост трещин происходит под действием относительно небольших усилий. Постепенное раздирание приводит к относительному перемещению слоев в контакте, без общего проскальзывания, образованию скаток и их отделению при значительных усилиях. Наиболее стойки к фрикционному износу резины с высокими прочностью и сопротивлением раздиру. [c.155]

    Для несферических частиц коэффициенты трения различны для направлений движения, совпадающих с продольной и поперечной осями частицы. Средний коэффициент трения для эллипсоида больше, чем для сферы того же объема. Для длинных стержнеобразных молекул коэффициент трения и вязкость особенно велики. [c.82]

    В случае твердых эллипсоидов вращения коэффициенты трения при движении частицы в направлении, параллельном (хц) [c.155]

    Величина коэффициента трения в прессовых соединениях зависит от материала сопрягаемых деталей, вида запрессовки, шероховатости сопрягаемых поверхностей, направления смещения деталей и т. п. Для предварительных расчетов при прлменении сопрягаемых деталей из стали и чугуна рекомендуется принимать  [c.123]

    В процессе засыпки зернистого материала в вертикальную трубу происходит сжатие и некоторое смещение нижележащих слоев относительно стенок трубы и на границе с последними возникают поверхностные силы трения т (рис. 1.2). Значение последних зависит от различных случайных факторов и всей предыдущей истории насыпного слоя [4], а направление может зависеть от характера внешних усилий, действующих на слой. Так, если дно засыпаемой трубы представляет собой свободно перемещающийся поршень (рис. 1.2, б) и к нему прикладывают вертикальную силу Fbh. превышающую массу поршня и слоя, то силы поверхностного трения т будут направлены не вверх, как на рис. 1.2, а, а вниз. С увеличением эти силы статического трения начинают возрастать до предельно возможного значения Хпред = Дог, когда поршень начнет проталкивать слой вверх (/ — коэффициент трения сыпучей среды о стенки трубы). [c.15]

    Более широкое распространение получили шнековые машины, теория которых описана в литературе [7]. В этих машинах материал перемещается За счет взаимодействия вращающегося шнека с неподвижными стенками цилиндра. При этом большое значение имеет коэффициент трения между Материалом и шнеком, а также между материалом и цилиндром, особенно на участке загрузки, который заполнен нерасплавленным и непластифициро-ванным материалом. Для того, чтобы материал мог перемещаться вдоль оси шнека, коэффициент трения о поверхность шнека должен быть малым, а о стенки цилиндра — большим. Если не выполняется это основное условие. Материал будет вращаться вместе со шнеком без осевого перемещения. Шнек создает напор в потоке материала, заполняющего канал нарезки шнека. Создаваемое давление потока действует в двух взаимно противоположных направлениях — в стороны формующего инструмента и реактивно — в сторону загрузки, тан как примыкающие к ней области давления обычно равны нулю. Обратное движение потока в сторону загрузочной зоны происходит как вдоль оси винтового канала шнека, так и через кольцевой зазор между выступами нарезки шнека и цилиндром. При высокой вязкости расплава и малой величине кольцевого зазора утечка через этот зазор относительно невелика. [c.189]

    Обычно частицы в дисперсных системах с твердой дисперсной фазой имеют неправильную форму. При свободном оседании частица несферической формы ориентируется в на фавленин движения таким образом, чтобы обусловить максимальное сопротивление движению (сечение с наибольшей площадью), что уменьшает скорость осаждения. Для частнц, линейные размеры которых но разным направлениям различаются незначительно, при расчете коэффициента трения по уравнению (IV.6) можно воспользоваться фактором формы, который равен отношению площадей поверхностей сферической частицы 5сф н реальной частицы 5, имеющих одинаковые объемы  [c.192]

    Химики — специалисты по шерсти уже издавна пытались найти теорию, удовлетворительно объясняющую явление свойлачивания. Весьма примечательно, что самая давняя из всех этих теорий до сих пор имеет преобладающее число приверженцев. Речь идет о теории действия направленного трения , созданной Монжом еще в 1790 году (см. ссылку 231). Монж обнаружил, что шерсть обладает разными коэффициентами трения, находящимися в зависимости от направления последнего. Кроме того, Монж заметил, что чешуя волокна шерсти напоминает по своему строению черепичную кровлю, причем пластинки чешуи направлены открытой своей стороной к тонкому концу волокна. Действие направленного трения Монж приписывает чешуе. С тех пор, как эта теория появилась, ею продолжают пользоваться для объяснения явления свойлачивания, и надо сказать, что она вполне правдоподобна, так как наблюдениями за процессом свойлачивания установлен факт перемещения волокон в одном направлении до тех пор, пока oн окончательно не спутаются. При разработке способов предупреж дения свойлачивания выяснилось, что эта цель достижима при условии разрушения чешуи волокон. Это обстоятельство расцени валось как дополнительное подтверждение теории Монжа. Не смотря на все сказанное, рассматриваемая теория не удовлетво ряла полностью более критически настроенных ученых, а дальней шие исследования привели к выводам, которые вызывают сомне ния в исчерпывающей ее обоснованности. Так, например, в некоторых случаях выявилось, что шерсти может быть придана способность противостоять свойлачиванию без разрушения чешуи. Далее Гаррис (см. ссылку 232) установил, что волокна шерсти некоторых животных, обладающие такой же чешуей как волокна шерстяного материала, свойлачиваются лишь с большим трудом. Для того чтобы добиться увеличения склонности таких волокон к свойлачиванию, приходится прибегать к способам каротинг , Гаррис высказал мысль, что основным фактором свойлачивания является [c.240]

    Рассмотрим простейший случай уплотнения в цилиндре (рис. 8.14). Нормальная сила Fq, приложенная к верхнему поршню, создает в материале напряжения — нормальное т и радиальное т, . Из-за существования радиального напряжения возникает сдвиговая сила трения, которая действует в направлении, противоположном нормальной силе. Поэтому сила действующая на нижний поршень, окажется меньше, чем сила, приложенная к верхнему поршню. Составляя баланс сил, подобно тому как это было сделано при выводе уравнения Янсена, и предполагая, что трение о стенки существует, отношение осе-вого напряжения к радиальному постоянно для любой точки и коэффициент трения о стенку тоже постоянная величина, получим простое экспоненциальное соотношение между приложенной и передаваемой силами (подробно см. в разд. 8.11)  [c.237]

    В этом выражении а — множитель, учитывающий увеличение переноса тепла теплопроводностью на стенке за счет осажденных частиц. Вохтел и Вэгенер считали, что сила трения, удерживающая частицы на стенке, должна быть примерно такой же величины, как и Fth.w. Усредненные касательные напряжения в среде (Fs) действуют на частицу в направлении, противоположном силе трения между частицей и стенкой, и стремятся привести отложения в движение. Величина этой силы может быть оценена по коэффициенту трения / )  [c.262]

    На эффективность и производительность камнеотделительных машин виброп-невматического принципа действия оказывают существенное влияние следующие факторы частота, амплитуда и направление колебаний, скорость воздушного потока, угол наклона деки и коэффициент трения ее поверхности, различие в плотности зерна и минеральных примесей, нагрузка и влажность зерна. Эффективность очистки зерна от минеральных примесей должна быть не ниже 95 %. Содержание годного зерна в отходах не более 1 %. [c.261]

    Чтобы оторвать осадок от перегородки и преодолеть силу адгезии, нужно приложить к нему соответствующую силу отрыва отр Если сила Ро1р направлена перпендикулярно к ткани (ди-гфрагме), то она идет на преодоление только силы адгезии Рад, (силы статического прилипания) [74] Тангенциально при-юженПая внешняя сила тратится на преодоление сил трения Гтр В этом случае сила отрыва может быть выражена через нормально направленную к перегородке силу Рв. с которой рсадок прижат к перегородке и коэффициент трения f [c.91]

    ОТ расположенных снаружи цилиндра нагревателей й теплоты внутреннего трения в материале. При плавлении объем полимера уменьшается. Соответственно в этой зоне уменьшается глубина канала червяка. В последней зоне — дозирующей — весь винтовой канал червяка заполнен расплавом. Б винтовом канале червяка в этой зоне выделяют четыре потока расплава прямой (вынужденный), направленный к формующей головке, обратный — уменьшение прямого потока вследствие сопротивления головки и стенок цилиндра, циркуляционный — в плоскости, перпендикулярной оси винтового канала, и поток утечки — в зазоре между червяком и внутренней поверхностью цилиндра, направленный к загрузочному бункеру. Производительность экструдера определяют прямой и обратный потоки. Циркуляционный поток не влияет на производительность, а поток утечки обычно настолько мал, что им часто пренебрегают при расчетах. Соотношение длин зон червяка определяется характером перерабатываемого материала Для переработки аморфных термопластов, плавящихся в широком интервале температур, применяют червяки с длинной зоной сжатия, для кристаллизующихся полимеров —с короткой зоной сжатия (длиной около одного диаметра), а для переработки нетермостойких материалов, например поливинилхлорида,— червяки без зоны сжатия, с постепенным уменьшением глубины канала, чтобы избежать paз ioжeния полимера за счет тепловыделения в зоне сжатия,. Для перемещения материала внутри цилиндра нужно, чтобы коэффициент трения о поверхность червяка был меньше, чем о стенку цилиндра, так как иначе полимерный расплав будет только вращаться с червяком без перемещения в осевом направлении. Чтобы снизить коэффициент трения, червяк охлаждают, подавая воду внутрь полости в его сердечнике. При перемещении расплава внутри цилиндра часть механической энергии переходит в тепловую, тепловыделение увеличивается с повышением частоты вращения червяка. В машинах с быстроходными червяками (частота вращения более 2,5 об/с) тепловыделение настолько велико, что при установившемся режиме работы отпадает надобность в наружном обогреве (адиабатические экструдеры). [c.276]


Смотреть страницы где упоминается термин Коэффициент трения, направленность: [c.52]    [c.122]    [c.71]    [c.191]    [c.188]    [c.104]    [c.379]    [c.89]    [c.52]    [c.17]    [c.36]    [c.79]    [c.27]    [c.202]    [c.320]    [c.256]   
Химические волокна (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент трения

Коэффициент трения, направленность у шерсти



© 2024 chem21.info Реклама на сайте