Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Суспензии комбинированные

    В промышленности используются различные виды псевдоожиженных систем фонтанирующие, виброкипящие, комбинированные (первая стадия — фонтанирующий слой, вторая — обычный псевдоожиженный) и др. Некоторые растворы и суспензии обезвоживаются на псевдоожиженной инертной насадке, а вы.сушенный продукт выносится из сушильной камеры в виде мелочи. Растворы могут обезвоживаться с получением гранулированного продукта. [c.499]


    Получение шихты. Данная стадия также осуществляется с применением комбинированного реактора. В реактор на поверхность горячих шаров из смесителей СР-1,2 подается суспензия исходных реагентов. Выходящая из реактора шихта шнековым транспортером ШТ-1 направляется на досушку в барабанную сушилку БС-1. Туда же из бункера Б-3 через дозатор Д-3 подается в заданной пропорции графит, а из бункера Б-4 через дозатор Д-4 - адсорбент (модификатор). Выходящая из бункера шихта собирается в бункере Б-5. [c.152]

    Комбинированная холодно-горячая дефекация позволяет максимально разложить несахара и получить сок с мень-щей цветностью. Оптимальная длительность ее 15—20 мин. На основную дефекацию могут возвращать до 100 % к массе свеклы сока сатурации или сгущенной суспензии. [c.59]

    Получение комплекса 1П. Все операции проводят на холоде 0... —4° С). Сукцинат цитохром с-оксидоредуктазу, полученную как описано на с. 426, суспендируют в фосфатном буфере (калиевые соли) с pH 7,4 до конечной концентрации белка 5 мг/мл. Суспензию помещают в небольшую трехгорлую колбу, снабженную насадкой для деаэрирования, рН-электродом (комбинированный электрод, пропущенный через герметически закрытый шлиф) и делительной воронкой. Колбу охлаждают в сосуде со льдом, помещенном на магнитную мешалку. [c.429]

    В этой книге за основу принята комбинированная классификация оборудования по принципу его действия и конструктивным особенностям. Схема классификации оборудования для разделения суспензий представлена иа. рис. 3-1 и 3-2. Следует отметить, что в схему включены аиболее широко применяемые в химической промышленности типы оборудования и не приведены опытные или редко используемые типы фильтров 1[80] и центрифуг [81] (например, барабанные вакуум-фильтры с бо -ковым питанием, дисковые вакуум-фильтры с отжимом осадка, непрерывные вакуум-фильтры листовые или патронные е сухой ЙЛИ мокрой выгрузкой осадка). ..  [c.93]

    Комбинированное применение толстого обновляемого намывного слоя с добавкой ФВВ в осветляемую суспензию рекомендуется в тех случаях, когда не удается предотвратить проникновение частиц примеси в глубину слоя или когда на поверхности образуется слой липкого осадка с большим удельным сопротивлением. [c.186]

    Обычно добываемый плавиковый шпат подвергают обогащению Большей частью применяют комбинированные методы. В ФРГ очистку флюорита от барита производят гидромеханическим и флотационным методами, при этом получают концентрат, содержащий до 98% СаРг. В США отделяют флюорит от кальцита осаждением в тяжелых суспензиях и флотацией вначале в тяжелой суспензии обрабатывают частицы размером 2 мм и получают концентрат с 90% СаРг, затем его размалывают до 0,2—0,3 мм и флотируют, получая продукт с 98% СаРг [c.319]


    Как видно из таблицы, коэффициент извлечения крахмала из теста значительно выше, чем из суспензии, но для комбинированной переработки вполне достаточно даже 35—40%. [c.43]

    Возможен другой технологический вариант, при котором твердая фаза, обладающая гидрофильностью, смачивается сначала водной жидкостью. При последующем смешении полученной водной суспензии с мазевой основой получаются комбинированные системы — эмульсии водной суспензии в жировой среде. Частицы твердой фазы в этих случаях оказываются включенными внутрь эмульгированных капель водной фазы, распределенных в свою очередь в жировой фазе. В последнем случае часто получаются мази, более активные в терапевтическом отношении, чем в первом случае. Таким образом, технология оказывает существенное влияние на терапевтическую эффективность мази. [c.248]

    Перспективна переработка сырья по комбинированным схемам, включающим обогащение в тяжелых суспензиях и отсадку. Обычно в тяжелых суспензиях обогащается крупная часть (до 6—8 мм), а материал — 6(8)-]-0,5 мм поступает на отсадку в некоторых случаях отсадка применяется для предварительного обогащения, а концентрат отсадки доводится в тяжелых суспензиях. [c.131]

    К специальным способам хлорирования ПЭ, не имеющим широкого применения в технике, относятся хлорирование жидким хлором, хлорирование полимеров в массе (пленок, волокон), а также комбинированное хлорирование (на первой стадии — в псевдоожиженном слое, а на второй — в водной суспензии или органическом растворителе). [c.10]

    Конструкции отстойников. В зависимости от назначения различают отстойники для эмульсий и суспензий. Последние изготовляются с ручным или механизированным способом удаления осадка. Режим работы отстойников может быть непрерывным, периодическим или комбинированным. [c.275]

    Поэтому представляют бесспорный интерес любые схемы, исключающие работу с избытком кислоты и уменьшающие расходы при нейтрализации. Наиболее принято комбинирование нейтрализации сульфомассы с переработкой отходов от щелочного плавления [7, с. 129]. Нейтрализация производится раствором или суспензией сульфита натрия, а выделяющаяся при этом двуокись серы направляется на нейтрализацию раствора фенолятов после щелочного плавления. Принципиально возможно непосредственное смещение сульфомассы с концентрированным раствором щелочи в начальной стадии щелочного плавления. При этом совмещаются оба процесса, а тепло нейтрализации может быть использовано для выпарки избытка воды. Однако именно значительные тепловыделения создают трудности при осуществлении подобного комбинирования в аппаратах периодического действия, так как при этом происходит интенсивное вспенивание. Кроме того, и это особенно важно, увеличивается расход щелочи, так как исключается нейтрализация сульфитом натрия. [c.136]

    В промышленности катализатором служит карбонат меди, нанесенный в виде суспензии в растворе силиката натрия на пемзу и восстановленный водородом. Катализатор хорошо работает окО ло года, но за этот период дважды подвергается регенерации. Расход меди—1 кг на 1000 кг анилина. Хорошие результаты дает никелевый катализатор, комбинированный с оксидом ванадия. Восстановление на этом катализаторе проводится в интервале температур 240—300 °С и дает выход анилина до 99%. [c.121]

    Классификацию методов капиллярного контроля осуществляют по типам пенетрантов [2], прежде всего по способам их индикации после проявления. К основным методам относят люминесцентно-цветной, люминесцентный, цветной, яркостный (ахроматический), фильтрующейся суспензии. В этом перечне методы расположены по мере убывания их чувствительности к слабо раскрытым неглубоким дефектам. В отдельный класс выделяют методы, в которых для индикации пенетранта, оставшегося в полости дефекта, применяют приборные средства измерители радиационного излучения, электропроводности (см. выше). Их называют комбинированными, поскольку в них для обнаружения дефектов кроме капиллярного эффекта применяются также другие физические явления. [c.64]

    Мышей-сосунков заражают в мозг (0,01 мл), подкожно (0,03 мл), внутрибрюшинно (0,05 мл) или комбинированным методом с последующим наблюдением в течение 14 дней. При развитии клинических симптомов из мозга больных животных и тушек готовят 20%-ю суспензию для дальнейшего пассирования вируса. Берут также кусочки тканей для гистологического исследования. [c.298]

    Для хлорирования полиэтилена разработан ряд промышленных методов, —хлорирование в растворе, в суспензии, комбинированный метод и др. При хлорировании в растворе полиэтилен при 120°С растворяют в I4, а затем после инициирования вводят хлор. Хлорирование происходит при 70°С с отводом образовавшегося хлорида водорода. После окончания процесса реакционную смесь охлаждают, дегазируют остаточный НС1, избыточный хлор вытесняют азотом и раствор перекачивают в коагуляционную емкость. В кипящей воде при pH = 9 хлорированный полиэтилен коагулируется, а растворитель выпаривают. Полимер измельчают и сушат. Содержание хлора в нем составляет 24% (мае.). [c.51]

    Большое внимание уделяют комбинированным аииаратам многофункционального назначения в производстве химических реактивов и особо чистых химических вептеств. Так как обработка проводится в одном аппарате, гарантируется высокая чистота производимого продукта. Разработаны комбинированные технологические аппараты, в которых совмещены процессы фильтрования суспензии и сушки осадка. Одна из конструкций предназначена для кристаллических продуктов, в основном, солей (нитратов, хлоридов, сульфатов и др.) с кристаллами размером более 60 мкм, другая — для высокодисперсных продуктов— оксидов, гидроксидов, карбонатов и других — с размерами частиц менее 60 мкм. Аппараты обоих типов прошли испы- [c.26]


    Фирма S harples orp. выпустила комбинированную горизонтальную центрифугу с пульсирующей выгрузкой осадка. Конический поршень центрифуги выполнен перфорированным. Суспензия, поступающая через питающую трубку к центру поршня, фильтруется в основном на его поверхности. Осадок под действием инерционных сил сползает с поршня на цилиндрический ситчатый ротор, где окончательно фильтруется, промывается и просушивается. Промывка может производиться трехкратно с раздельным отводом промывных вод по зонам. Аппарат пригоден для обработки кристаллических п волокнистых веществ. Благодаря тому, что основная масса фугата отводится в самом начале с фильтрующей поверхности поршня при относительно небольшом факторе разделения, осадок получается более однородным, не склонным к образованию разрывов и трещин при подсушке кристаллы осадка измельчаются меньше, чем на обычных аппаратах с пульсирующей выгрузкой. Новые центрифуги выпускаются модели D-200 производительностью до 5 т/ч и D-330—до 10 т/ч. Максимальный фактор разделения — 1450. Машины изготовляются из нержавеющей стали марки 316 или моиель-металла [117]. [c.107]

    В связи с.этим совершенствованию технологии с целью улучшения технико-экономических показателей процесса депарафинизации уделяется" большое внимание. Кроме использования порционной подачи растворителя, замены ацетона на метилэтилкетон, создания комбинированных установок по производству низкозастывающих масел и парафинов вводятся в эксплуатацию укрупненные установки депарафинизации производительностью по сырью 90СГ—1100 т/сут при переработке дистиллятного сырья и 600—700 т/сут — для остаточного. Для создания условий кристаллизации, обеспечивающих образование При охлаждении раствора сырья крупных кристаллов твердых углеводородов, хорошо отделяемых от жидкой фазы, предложено обрабатывать суспензии твердых углеводородов ультразвуком, который разрушает пространственную Структуру кристаллов и резко снижает структурную вязкость. Это позволяет повысить скорость отделения твердой фазы от жидкой и получить более глубокообезмасленный парафин или церезин. [c.208]

    С целью экономии теплоты принципиально возможно комбинирование энергоемкого выпаривания с другими методами концентрирования, которые характеризуются более низкой удельной энергопотребляемостью при удалении растворителя из разбавленных растворов. К таким методам относят [190] электродиализ, гиперфильтрацию, осаждение кристаллогидратов, замораживание. Комбинирование методов требует осуществления обработки упариваемого раствора в две стадии сначала удаляется основное количество воды эффективным методом, не требующим большой затраты энергии, а потом упаривают раствор или суспензию до необходимой конечной концентрации. Целесообразность такого приема обосновывается характером зависимости энтальпии воды от концентрации раствора но технологически это не простая схема, особенно применительно к многотоннажным производствам. [c.230]

    Для комбинирования высокотемпературной распылительной сушки растворов и суспензий с последующим получением гранул в кипящем слое предложен аппарат РКСГ распылительная сушилка-грану лятор). Диспергируемая в верхней цилиндрической широкой части аппарата нагретая (70—80 °С) суспензия высушивается в распыляющем ее топочном газе, поступающем с температурой 600—700 °С. При начальной влажности суспензий 30—50 % из нее удаляется до 7Й% воды. Окончательное досушивание с образованием гранулята происходит в кипящем слое, находящемся на решетке в нижней, более узкой, части аппарата. Из-под решетки в слой подается топочный газ, разбавленный воздухом до 120—150 °С. Температура в слое 90—100 °С. В зоне распылительной сушки в большей мере обезвоживаются мелкие капли, которые превращаются в центры гранулообразования и поступают в кипящий слой. Более крупные капли теряюг в зоне сушки меньше влаги поступая в кипящий слой, они смачивают гранулы, способствуя агломерации мелких частиц и росту гранул. Влагосъем с 1 м общего объема аппарата при указанных выше условиях достигает 50 кг/ч, а с 1 м решетки — 150 кг/ч. [c.293]

    Значительное развитие получило обогащение в тяжелых суспензиях (суспензоид — галенит или ферросилиций, иногда с добавкой магнетита), особенно в комбинированных схемах в сочетании с флотацией, магнитной сепарацией, декрипитацией и гравитацией на специальных сепараторах [94]. Обогащение в тяжелых суспензиях (и в тяжелых жидкостях) — один из гравитационных методов, основанных на использовании различия в плотности полезных минералов и пустой породы. Оно позволяет успешно разделять минералы, близкие по физическим свойствам, в частности при разнице в плотности минералов 0,4—0,5 и даже 0,2 г/см . [c.34]

    При отработке процесса сжигания углеводомазутных смесей при раздельной подаче в топку водоугольной суспензии и мазута опробовано несколько вариантов горелочных устройств. Хорошие результаты были получены на горелочном устройстве комбинированного типа. Форсунка горелочного устройства имеет отбойный диск, три соосно расположенные трубы, каждая из которых на выходе имеет конусную насадку, лопаточный завихритель для начальной закрутки подаваемого через форсунку мазута и компрессорного воздуха и штуцеры для подсоединения к форсунке трубопроводов растопочного топлива, мазута, водоугольной суспензии и пара. Смешение водоугольной суспензии, подаваемой через центральный ствол, с мазутом происходит в выходной камере, образованной концевыми насадкамщ диаметрами 24 и 12 мм. Выходящая из форсунки углеводомазутная смесь разбивается потоком компрессорного воздуха, выходящим через кольцевой зазор, образованный конусными насадками диаметрами 4 0 и 24 мм, отбивается от отбойного диска и, стекая с последнего в виде пленки, распыливается потоком первичного воздуха. Воздух в горелочное устройство поступает двумя потоками тангенциально и аксиально. Изменение соотношения аксиального и тангенциального воздуха позволяет регулировать угол раскрытия факела при хорошей тонине распыла. [c.75]

    Существует множество комбинированных методов, в которых используют элементы трех указанных способов в разном сочетании и с добавлением ПАВ, кислых и щелочных агентов, солей и др. При выборе растворителя следует иметь в виду, что он может давать с разными сорбентами истинные суспензии, осаждающиеся в соответствии с законом Стокса (в них частицы распределены в виде индивидуальных частиц), и скленные суспензии, осаждающиеся много быстрее и содержащие комочки из нескольких частиц сорбента. [c.116]

    В аппаратах комбинированного типа суспензия непрерывно с небольшой скоростью протекает через отстойный резервуар скорость ее протекания должна быть такой, чтобы частицы успели осесть на дно отстойника, прежде чем жидкость выйдет из аппарата. Постепенно на дне аппарата накапливается слой осадка, которглй периодически удаляется после декантации жидкости. [c.205]

    В комбинированных сушилках РКСГ [27], разработанных НИУИФ, обезвоживают растворы нитрофоски и других минеральных солей с получением гранулированного продукта. Раствор или суспензию вводят в верхнюю распылительную камеру. В форсунку подают 15—20 % от общего расхода воздуха при температуре 700—800°С, что позволяет удалить до 70% всей влаги. Досушка и гранулирование осуществляются в нижней части аппарата, где создается КС на площади 0,5 м . При производительности по сухой нитрофоске 400—500 кг/(м2-ч) объемный влагосъем составляет 35—40 кг/(м -ч), расход теплоты — 5700—7500 кДж/кг влаги. [c.140]

    Комбинированное применение тонкого намывного слоя с добавкой ФВВ в осветляемую суспензию возможно при концент-рацйи примесей в суспензии от 0,2 до 10 кг/м и при достаточно жестких требованиях к качеству фильтрата. Для добавки в [c.185]

    Для определения pH водных вытяжек используют стеклянные электроды. Навеску массой 10 г воздушно-сухой почвы, пропущенной через сито с отверстиями в 1 мм, помещают в плоскодонную колбу, приливают 25 мл дистиллированной воды (pH 6,0—6,5), взбалтывают в течение 1 ч. В приготовленную суспензию пофужают комбинированный электрод или простой Н-электрод и электрод сравнения (каломельный или хлорсеребряный) и измеряют ЭДС с помощью любого подходящего рН-метра, иономера или потенциометра. Затем по фа-дуировочному фафику, предварительно построенному с помощью стандартных буферных растворов, находят значение pH. На рН-метрах имеется непосредственно шкала pH, настройку которой осуществляют также по стандартным растворам. [c.218]

    Значительное развитие получил метод обогащения в тяжелых суспензиях (с применением в качестве суспензоида галенита РЬЗ или ферросилиция, иногда с добавками магнетита), особенно в комбинированных схемах в сочетании с флотацией, магнитной сепарацией, декрипитацией и гравитацией на специальных сепараторах [10]. Обогащение в тяжелых суспензиях — один из гравитационных методов, основанных на использовании различия в плотностях ценных минералов и пустой породы. Гравитационные принципы давно применялись в отсадочных машинах и концентрационных столах для получения концентратов сподумена с содержанием 4—5% Ь гО, несмотря на то что отделение сподумена (р = 3,1—3,2 г см ) от пустой породы (р = 2,6—2,8 см ) представляет значительные трудности, возрастающие при обогащении выветрившегося сподумена с пониженной плотностью. Тяжелые суспензии (и тяжелые жидкости ) позволили успешно сепарировать минералы, близкие по физическим свойствам, в частности, при разнице в плотностях минералов 0,4—0,5 и даже 0,2 единицы. [c.204]

    Высокий градиент ионной силы в воде дельт приводит к дестабилизации коллоидного материала (т. е. суспензии тонкозернистого материала), вызывая его флоккуяяцию и выпадение на дно. Лучше можно понять этот процесс на примере глинистых минералов — наиболее распространенных неорганических коллоидов в дельтовых водах. Глинистые минералы несут на поверхности отрицательный заряд (см. п. 3.6.6), частично компенсированный адсорбированными катионами. Если поверхностные заряды не нейтрализованы путем адсорбции ионов, глинистые минералы проявляют тенденцию к сохранению состояния взвеси, поскольку одноименные заряды отталкиваются. Эти силы отталкивания велики по сравнению с силами притяжения Ван-дер-Ваальса (см. вставку 3.10) и предотвращают аггрегиро-вание и выпадение частиц. Следовательно, какой-либо агент, нейтрализующий поверхностные заряды, будет способствовать флоккуляции частиц. Многие коллоиды флоккулируют в среде электролита, и морская вода — гораздо более сильный электролит, чем речная, — выполняет эту роль в дельтах. Катионы морской воды притягиваются к отрицательно заряженным поверхностям глин. Они формируют в растворе подвижный слой, примыкающий к поверхности глин (рис. 4.1), и образующийся комбинированный электрический двойной слой близок к состоянию электронейтральности. Соседние частицы могут после [c.152]

    Для комплексной переработки низкооктановых бензинов разработан (во ВНИИНП) комбинированный процесс изориФорминга. представляющий собой комбинацию гидрокрекинга (в начале процесса) и каталитического риформинга продукта гидрокрекинга после отделения изокомпонентов (фракции н.к. -85 °С). Промышленный катализатор для стадии гидрокрекинга ГКБ-ЗМ получают введением в суспензию гидроксида алюминия соединений молибдена, затем никеля и цеолита РЗЭУ с содержанием натрия менее 0,1%. Материальный баланс комбинированного процесса изориформинга, проведенного на реконструированной промышленной установке Л-35-11/300, приведен в табл. 10.20. [c.592]

    Таким образом, из сказанного следует, что аэрозоли состоят из нелетучих веществ (одного или нескольких), среди которых содержится активный ингредиент летучего пропеллента. Очень редко нелетучим компонентом является только действующее вещество. Значительно чаще оно растворено или диспергировано в растворителях или их смесях. Создание аэрозоля заключается в разработке технологии приготовления желаемой комбинации нелетучего и летучего компонентов. В связи с этим, в зависимости от степени родства и смешиваемости компонентов основной рецептуры (содержимое баллона без пропеллента, которое здесь и в дальнейшем будем называть концентратом) с пропеллентом,аэрозоли целесообразно с практической точки зрения разделять не на двух-и трехфазные системы, а на аэрозоли-растворы, аэрозоли-эмульсии, аэрозоли-суспензии, пены в аэрозольных упаковках, аэрозоли, представляющие собой комбинированные системы. [c.703]

    При наличии в составе концентрата нескольких компонентов, образующих одновременно эмульсию, суспензию, пену, имеют место комбинированные микрогетерогснные дисперсные системы с различным количеством фаз. [c.704]


Смотреть страницы где упоминается термин Суспензии комбинированные: [c.404]    [c.348]    [c.232]    [c.513]    [c.130]    [c.209]    [c.195]    [c.41]    [c.183]    [c.92]    [c.182]    [c.96]    [c.614]   
Процессы и аппараты химической технологии Издание 3 (1966) -- [ c.782 ]




ПОИСК





Смотрите так же термины и статьи:

Суспензии



© 2025 chem21.info Реклама на сайте