Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цистина производные

    Группа IV. Высококонденсированные углеводороды, амиды высших кислот антрахиноны, производные пурина, некоторые аминокислоты (цистин, тирозин), сульфаниловая кислота, высшие амины и сульфамиды, высокомолекулярные соединения. [c.296]

    Производные аминокислот обычно циклизуются труднее, особенно в случае глицина, чем те же аминокислоты, входящие в состав пептидов. Для синтеза производных фенил-тиогидантоина (ФТГ) [86, 91] или количественного определения N-концевых остатков ФТК-производные часто циклизуют в 1 н. растворе НС1 в течение 1 час при 100°. Однако в этих условиях ФТГ-производные серина, треонина и цистина нестабильны, поэтому их не удается выделить и количественно определить. Кроме того, все ФТГ-производные в кислой среде разлагаются, причем степень разложения возрастает с увеличением кислотности и повышением температуры [114, 317]. В водной среде максимальный выход ФТГ-производных достигается при действии сильной кислоты при сравнительно низких температурах и по возможности меньшей продолжительности реакции. При низкой температуре реакционной смеси и применении концентрированных кислот (1—5 н.) удалось синтезировать ФТГ-производные серина, треонина и цистина в водной среде [159, 195]. Кроме того, эти соединения легко получаются в среде уксусная кислота — HG1 [289]. [c.240]


    Аминокислоты из ФТГ-производных обычно регенерируют действием гидроокиси бария [86] при 140° в течение 48 час (по другим данным [284], в течение 2 час) или 6 н. НС1 при 150° в течение 16 час [194]. Другие авторы [98, 275] предпочитают проводить регенерацию действием иодистого водорода при 140°. ФТГ-Производные желательно идентифицировать непосредственно, так как триптофан, аргинин, серии, треонин, цистеин и цистин разрушаются или лишь частично регенерируются из них кислотами и щелочами, причем при такой обработке образуются другие вещества, дающие положительную реакцию с нингидрином. Другие аминокислоты можно регенерировать количественно кислотами ([194], но см. также [108]) или щелочами [284]. [c.242]

    Нитропруссид натрия для SH-соединений (цистеин), и S — S-соединений (цистин) и для производных цианамида (аргинин). [c.487]

    Пятую фракцию разделяют в той же системе, что и четвертую, элюируя при соотношении 5 1 ДНФ-аспарагиновую и ДНФ-глутаминовую кислоты, а при соотношении 5 2 ди-ДНФ-цистин. Производные глутаминовой л аспарагиновой кислот разделяют в той же системе, что и ДНФ-триптофан и ДНФгглицин, причем при соотношении 5 1 1 элюируется ДНФ-глутамино-вая кислота, а при соотношении 5 1 2 — ДНФ-аспарагиновая кислота. [c.363]

    Крашение шерсти напоминает процессы, протекающие в ионообменных смолах. Кератин шерсти, образующий за счет остатков цистина сетчатую структуру, является цвиттерионом. В качестве основания он обладает эквивалентным весом 1200 и окрашивается в уксуснокислом растворе красителями, имеющими кислотные группы. В результате двойного обмена соли шерсти с натриевой солью сульфо-кислотного красителя последний связывается в виде соли и в процессе крашения примерно при 90° медленно диффундирует в шерстяное волокно. Небольшие молекулы красителя, например моноазосоединения или производные аминоантрахинона с одной сульфогруппой в молекуле, дают очень ровные выкраски по шерсти соединения с двумя сульфо-группами закрепляются сильнее и поэтому более прочны к стирке (суп-раноловые или полярные красители), но зато дают менее ровные выкраски. Большое значение для крашения шерсти имеет, кроме того, способность некоторых красителей (см. стр. 608) образовывать с солями хрома комплексные соединения, очень прочные к стирке и свету. [c.600]

    Сера, как фосфор и азот, входит в состав белковых веществ живой клетки, поэтому совершенно необходима для синтеза органического клеточного вещества. Наиболее важным серусодвржащим компонентом клетки является аминокислота цистин, которая входит в состав белка. Атомы серы в цистине находятся в виде тиоло-вой группы (—5Н). К производным пистиыа относятся метионин, биотин, тиамин, глутатион и др. Источником серы для большинства микроорганизмов служит сульфатный ион (—8042-), тиосуль-фатный ион (—ЗгОз -). В процессе жизнедеятельности микроорганизмы восстанавливают серу до 3 . Некоторые микроорганизмы не восстанавливают сульфаты и нуждаются в восстановленной сере (как, например, сероводород и цистеин). [c.284]


    Цистеин и цистин. Особое значение имеют входящие в состав белков аминокислоты, содержащие серу. На стр. 271 уже упомянут цистеин — а-аштокнслота, представляющая собой производное аланина, в котором при Р-углеродном атоме имеется остаток сероводорода—сульфгидрильная группа, или меркаптогруппа, —ЗН (стр. 132). За счет этой группы цистеин легко окисляется две его молекулы соединяются — возникает дисульфидная связь —3—3— (стр. 132) и образуется аткгинокислота — цистин [c.287]

    Цистеин HS— Hj HiNHg)—СООН является производным а-аминопропионовой кислоты, в молекуле которой один атом водорода замещен группой —SH. При окислении кислородом воздуха цистеин переходит в цистин  [c.381]

    Снижению потерь большинства аминокислот при кислотном гидролизе способствует проведение его в стеклянных ампулах под вакуумом с большим избытком (200—5000-кратным) тщательно очищенной и перегнанной над Sn b соляной кислоты. Распад тирозина предупреждают добавлением в ампулу фенола. Чтобы избежать превращения серусодержащих аминокислот в продукты различной степени окисления при гидролизе и последующих процессах хроматографии и электрофореза, образцы белка, содержащие цистеин и цистин, до гидролиза обрабатывают надмуравьиной кислотой. При этом образуется стойкое производное — цистеиновая кислота. Гидролиз проводят в течение 24, 48, 72 и 120 ч. Если содержание какой-либо аминокислоты с увеличением времени гидролиза постепенно уменьшается, его находят на графике зависимости содержания этой аминокислоты от длительности гидролиза путем экстраполяции к нулевому времени гидролиза. Если же содержание аминокислоты в ходе гидролиза постепенно увеличивается, истинную величину также определяют графически, ограничивая время гидролиза 96 или 120 ч ". [c.123]

    РИС. 13-7. Спектры поглощения N-ацпльных производных этиловых эфиров триптофана (/), тирозина (II), фенилаланина (III) и ди-метилового эфира цистина (/1 ) в метаноле при 25 °С, соответствующие переходам указанных соединений в первое электронно-возбужденное состояние. Спектры производных тирозина, фенилаланина и цистина умножены на коэффициенты 2, 20 и 4 соответственно [41]. [c.16]

    В качестве а-ациламинокомпоиентов нашли применение ацильные производные глицина, аланина, цистина, цистеина, тирозина, триптофапа и фенилаланина. Гидроксильная группа тирозина должна быть при этом защищена [370]. Выходы ациль-йых производных ди- и трипептидов обычно составляют 60- 80%. Были получепы также амиды лизергиновой кислоты [371]. [c.277]

    L-цистина (LXVI) и ега ди-N-бензоильного производного [7] был получен L-аланин [104]. [c.396]

    В таблице представлены не все аминокислоты, встречающиеся в белках. В ией нет гидроксипролина и гидроксилизи-на, содержащихся в коллагене фосфосерина-компонента всех фосфопротеидов иодпроизводных тирозина, содержащихся в тиреоглобулине цистина, к-рый часто встречается в белках, и нек-рых др. аминокислот. Все они-производные др. аминокислот, к-рые кодируются мРНК. Они образуются в результате модификации белков, происходящей после трансляции. [c.518]

    Ha этой р-ции основано использование Т. к. для хим. завивки волос (производные Т. к.-аммониевая соль, соль моноэтаноламина, моноглицериновый зфир-разр5тают связи S—S цистина в кератине волос, под действием окислителей зти сЬязи снова образуются). [c.568]

    Эта реакция не пригодна для отщепления С-концевых остатков пролина, так как они не образуют тиогидантоин, остатков аспарагиновой и глутаминовой кислот, которые образуют циклические ангидриды, а не тиогидантоины (аспарагин и глутамин, наоборот, дают тиогидантоины [301]), а также остатков серина, треонина, цистина, аргинина и лизина [19, 301], которые неустойчивы при циклизации или регенерации аминокислоты из тиогидантоинового производного. Таким образом, этот метод находит весьма ограниченное применение для прямого определения строения пептидов и белков. Для определения С-концевого остатка по разности [107] реакция может оказаться более полезной, но ее все же нельзя использовать для определения аспарагиновой и глутаминовой кислот и пролина. Однако путем микробиологического анализа [107], специфичного для остатков /-аминокислот, эти аминокислоты могут быть определены по потере оптической активности на 50% вследствие рацемизации в том случае, когда они являются С-концевыми. [c.247]

    В отличие от эфиров ТФА-аминокислот ацетиламинокислоты, впервые изучавшиеся Янгсом [129] в виде н-бутиловых эфиров, менее летучи и, следовательно, имеют больший удерживаемый объем. По-видимому, полярные основные аминокислоты, такие, как Арг, а также Гис, Три и цистин, вряд ли можно подвергать газовой хроматографии. Их нет среди 35 аминокислот (в том числе 18 природных), разделенных с помощью ГХ в виде н-амиловых эфиров Джонсоном и др. [42]. Эти авторы разделяли также н-бутило-вые,. изобутиловые и изоамиловые эфиры, приготовленные аналогично ТФА-производным. Эти эфиры получали в виде бромгидра-тов, а затем прямо ацетилировали уксусным ангидридом. Известно, что при этом из оксиаминокислот образуются также N, 0-диацетиль-ные соединения, но пока нет никаких данных о том, как взаимодействует ангидрид с другими полифункциональными аминокислотами. По сравнению с соответствующими ТФА-производными 0-ацетил-соединения гораздо меньше подвержены гидролизу и, по-видимому, обладают более высокой термоустойчИвостью правда, соответствующих количественных измерений еще не проводили. В литературе описано разделение н-пропиловых эфиров ацетиламинокислот [29], но подробные методики не были опубликованы. [c.321]


    Для синтеза тиофана В Гаррис и сотрудники применяли -(карбокси-метилмеркапто)-аланин, который был получен другими исследователями из /-цистина [316] или /-цистеина [317] и хлоруксусной кислоты в щелочном растворе. При бензоилировании с последующей этерификацией замещенный аланин превращался в метиловый эфир /-Ы-бензоил-р-(карбметоксиметил-меркапто)-аланина (V). Это вещество циклизуется метилатом натрия в натриевое производное 3-кетотиофана (VI). Натриевое производное выделяют и действуют на него кислотой, в результате чего образуется метиловый эфир /-3-кето-4-бензамидотиофан-2-карбоновой кислоты.  [c.206]

    Таким образом, пенициллины относятся к производным пенама. Биогенетически они происходят из дипептида цистинил-валина, в котором аминогруппа цистина может быть ацилирована различными аминокислотами, главным образом, а-аминоадипиновой. Существует множество пенициллинов, отличающихся друг от друга природой радикала R в формуле 6.44. В практике одно время наибольшее распространение получили бензилпени- [c.438]

    S) Выделение ДФН-аминокислот из продуктов полного гидролиза. Гидролизат разбавляют так, чтобы он стал 1 н. по соляной кислоте. 5 раз экстрагируют свободным от перекисей эфиром [160, 161] и в присутствии гистидина 5 раз этилацетатом экстракты трижды промывают 0,1 н. соляной кислотой. Затем объединяют, с одной стороны, все экстракты (фракция А растворимые в эфире ДНФ-аминокислоты н динитрофенол) и, с другой стороны, водную фазу с промывными водами (фракция Б свободные аминокислоты и растворимые в кислоте динитрофенилпроизводные, такие, как ДНФ-аргинин, ДНФ-цистеиновая кислота, моно-ДНФ-производные цистеина, цистина, гистидина, лизина, орнитина и тирозина если экстракцию проводили только эфиром, то в этой фракции можно обнаружить также часть дп-ДНФ-гистидина). [c.415]

    Толуол — пиридин —этиленхлоргидрин — 0,8 н. аммиак -Ь[30 4-+ 60 + 60) ( толуол -система [45]). Верхняя фаза служит для хроматографического анализа, нижняя — для предварительной обработки слоя (см. стр. 422). Эта система дает пятна с длинной бородой , что, естественно, связано с известными потерями вещества. Благодаря прекрасным разделительным свойствам этой системы мы используем ее в первом направлении при двумерной хроматографии. Мы считаем пока эту систему незаменимой и миримся с необходимостью предварительной обработки пластинок. Эта система обеспечивает, например, отделение ДНФ-фенилаланияа от ДНФ-метионина, ДНФ-норлейцина от ДНФ-валина, ДИФ- -аланина от ДНФ-лейцина, ДНФ-а-амино-и-масляной кислоты от ДНФ-пролина, ДНФ-аланина от ДНФ-саркозина кроме того, отделение группы, ди-ДНФ-аминокислот (кроме ди-ДНФ-цистина) от низших ДНФ-аминокислот и ДНФ-производных низших аминокислот от ДНФ-производных кислых аминокислот, причем последние остаются в точке старта. [c.418]

    Подавляющее большинство соединений, представляющих биологический интерес, содержат не только каталитически активную серу, но и азот в виде аминогрупп, также обладающий способностью катализировать выделение водорода. Наблюдаемый в растворах таких соединений каталитический эффект определяется общим действием всех активных групп в молекуле. Сунахара [795] на примере волн, вызываемых цистином и его производными, в которых блокированы либо аминогруппы (N,N-диaцeтилци тин), либо карбоксилы (диэтиловый эфир цистина), показал, что блокирование аминогрупп приводит к полной потере каталитической активности цистина, тогда как этерификация карбоксилов почти не сказывается на каталитической волне. Можно поэтому пред- [c.235]

    В гидролизатах коллагена и эластина содержатся десмозин и изодесмозин их разделяли в модифицированных условиях по одноколоночной [59, 60], а также по двухколоночной схемам анализа [61, 62]. Множество работ посвящено хроматографии серусодержащих аминокислот. Определены объемы выхода производных цистеина [63] и цистина, полученных после модификации белков и последующего гидролиза [64]. Найдены условия разделения производных лизина, полученных при модификации нативного белка, а также разработаны условия ускоренного анализа этих соединений [65, 66]. Метилгистидин и некоторые редкие аминокислоты разделяли на 15-сантиметровой колонке [67]. При снижении скорости потока в реакторе вдвое было достигнуто 10—20-кратное увеличение чувствительности при определении N-метиламинокислот, которые разделяли в специально разработанных условиях [68]. Триптофан и его производные разделяли на амберлите G-50 [69]. [c.349]

    Химические стимуляторы роста шерсти могут быть применены и мест-но. Вопрос стимуляции роста шерсти с помощью химических раздражителей не является новым и давно привлекает внимание исследователей. При применении химических веществ имеется в виду непосредственное раздражение ими кожи животных. К веществам, стимулирующим рост шерсти, могут быть отнесены гипосульфит с соляной кислотой, элементарная сера, нафталанская нефть, керосин, смазочные масла [3, 9, 101, фосфат калия [11], производные азотистого иприта, бензойная кислота, гистамин, ксилол [12]. Имеются сообщения о стимулирующем действии на рост волос 3%-ного раствора 20-метилхолантрена в бензоле и на возмол<-ность формирования при этих условиях новых волосяных фолликулов [13]. Изучение влияния минеральной серы на рост шерсти при накожной обработке убедительно показывает, что она существенно влияет на привес и шерстную продуктивность овец [14]. А. Л. Подучева [15], анализируя большой материал по применению цистина и серной подкормки, отмечает, что при недостатке серы в рационе применение серных подкормок, даже неорганических, оказывает положительное действие иа привес и рост [c.67]

    История вопроса. В 1929 г. Ф. Г. Гопкинс сделал интересное наблюдение, что тиольные производные (восстановленный глю-татион) осаждаются количественно небольшим избытком закиси меди из разбавленного раствора серной кислоты (0,5 н.— 1 н.). Это открытие послужило основанием для следующих методов определения цистина. [c.203]

    Производные пиридоксина — фосфопиридоксаль и фосфо-пиридоксамин—(см. стр. 192) являются коферментами ряда ферментов, участвующих в обмене аминокислот (аминотранс-феразы, декарбоксилазы аминокислот, кинуренинаминотране-феразы, цистеиндесульфуразы, фосфорилазы и др.). При недостатке пиридоксина нарушается обмен многих аминокислот, особенно триптофана, метионина, цистина, глютаминовой кислоты и др. Введение пиридоксина оказывает благоприятное действие при нарушении белкового, жирового и углеводного обмена. Суточная потребность в пиридоксине около 2 мг. [c.65]

    Тиоцианаты образуются в реакциях тиолят-ионов и тиоля-, тов тяжелых металлов с галогенцианом. На этой реакции основан, < метод получения меченых тиоцианатов (уравнение 190) [163] она также используется для увеличения выхода тиоцианатов при взаимодействии цианид-иона с диарилдисульфидами, в результате которого образуется смесь тиола и тиоцианата (уравнение 191) [164. В аналогичной реакции тиолов с дитиоцианом образуются сульфенилтиоцианаты, последующая реакция которых с тиолами приводит к дисульфидам. Такая последовательность реакций использована для синтеза производных цистина (уравнение 192) [165], [c.475]


Смотреть страницы где упоминается термин Цистина производные: [c.186]    [c.351]    [c.248]    [c.645]    [c.694]    [c.388]    [c.511]    [c.204]    [c.242]    [c.189]    [c.28]    [c.327]    [c.72]    [c.427]    [c.382]    [c.37]    [c.403]    [c.349]    [c.353]    [c.202]   
Пептиды Том 2 (1969) -- [ c.304 , c.305 ]




ПОИСК





Смотрите так же термины и статьи:

Цистин



© 2025 chem21.info Реклама на сайте