Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серы двуокись каталитическая активност

    Стабильность катализатора — это сохранение активности и избирательности его в процессе периодически повторяющихся циклов крекинг — регенерация. Высокая температура, присутствие паров воды, наличие некоторых металлов резко снижают стабильность катализатора. Как правило, при незначительном содержании паров воды промышленные катализаторы до 600° С стабильны. Преобладающий размер пор катализатора 50—100 А и удельная поверхность до 600 м /г. Эта пористая структура разрушается нри высокой температуре в присутствии водяных паров. Размер пор возрастает, удельная поверхность уменьшается. При этом изменяется и характер поверхности катализатора. Алюмосиликатный комплекс, который является активным центром катализатора, разлагается на окись алюминия и двуокись кремния, не обладающие каталитической активностью. Тяжелые металлы при наличии в исходном сырье серы значительно изменяют селективность катализатора в сторону образования как газообразных продуктов (водорода, метана) так и кокса. [c.237]


    С растворенным водородом и уменьшает его концентрацию вблизи электрода, сдвигая таким образом потенциал водородного электрода в положительную сторону. Однако кислород может повысить каталитическую активность металла и увеличить срок службы электрода. Поэтому при использовании электродов из полированной платины или золота желательно, чтобы в растворе имелись следы кислорода. Находящаяся в растворе двуокись углерода может изменить его pH. Другие примеси, такие, как соединения мышьяка и серы, могут действовать как каталитические яды и сокращать срок службы электрода. [c.134]

    Прямые опыты (стр. 192) по обработке ванадиевых соединений газовой смесью, содержащей двуокись и трехокись серы, опровергают эту точку зрения. Метаванадаты щелочных металлов неустойчивы в условиях каталитического окисления двуокиси серы и, следовательно, не могут быть каталитически активным компонентом промотированных ванадиевых катализаторов. Нельзя согласиться и с мнением Неймана, что повышенная по сравнению с пятиокисью ванадия каталитическая активность ванадатов щелочных металлов обусловлена более высоким давлением диссоциации сульфата низшей степени окисления. Как было показано выше (стр. 192), малая каталитическая активность чистой пятиокиси ванадия не вызывается ее переходом в сульфат ванадила, который протекает очень медленно. Добавка соединений щелочных металлов не только не замедляет, но, наоборот, ускоряет этот переход. [c.201]

    Заметно ускоряют окисление двуокиси серы также двуокись кремния, стекло и фарфор, но лишь при высоких температурах (порядка 700°). Имеются указания , что кристаллы горного хрусталя обладают более высокой каталитической активностью, чем осажденная двуокись кремния. Каталитическая активность окиси, алюминия лишь немного превосходит активность кремнезема. [c.34]

    Хармадарьян и Бродович [22], исследуя влияние носителя нэ каталитические свойства пятиокиси ванадия в окислении двуокиси серы воздухом, считали, что двуокись марганца лучший носитель, чем такие вещества, как асбест, инфузорная земля, стекло, фарфор и кварц,и отметили, что действие активаторов— сульфата меди, сульфата железа, хлорида бария и сульфата марганца—является функцией природы носителя. Они также указали, что метод покрьп ия и толщина слоя значительно влияют на эффективность катализатсра. Пятиокись ванадия, осажденная из коллоидного раствора соляной кислотой, имела большую каталитическую активность, чем приготовленная коагуляцией нагреванием. Зависимость активности от концентрации раствора обнаружена у катализатора, приготовленного из метаванадата аммония, нагретого до 440° для получения равномерного распределения. [c.124]


    Рейерсон и Томас [337] пропитывали сухой силикагель раствором нитрата меди, выпаривали массу досуха и затем для получения металла восстанавливали в струе водорода. Рейерсон получил при восстановлении адсорбированным водородом равномерное покрьп ие силикагеля платиной, палладием, серебром и другими металлами силикагель полностью эвакуумировали при температуре —80° и водород вновь адсорбировался на носителе. До обработки раствором, например нитрата серебра, адсорбируется хорошо заметное количество водорода с повышением температуры металлическое серебро равномерно осаждается по всему гелю [298]. В одном из патентов [374] предлагается чрезвычайно пористые гели (двуокись кремния, окись вольфрама, окись алюминия) пропитывать каталитически активным металлом или его соединением для этого вначале гель обрабатывают газообразным, способным восстанавливать соединением (двуокись серы, окись углерода, сероводород), а затем раствором соответствующего соединения металла (платины, серебра, меди, палладия, железа). [c.484]

    Для решения вопроса о природе соединения, обусловливающего каталитическую активность промышленных ванадиевых катализаторов, необходимо выяснить, какие ванадиевые соединения устойчивы в условиях каталитического окисления двуокиси серы. С этой целью автор и В. П. Плигунов подвергали различные ванадиевые препараты длительной обработке газовой смесью, содержащей двуокись и трехокись серы. [c.191]

    По мнению Киюры , во всех ванадиевых катализаторах, в том числе и промотированных окислами щелочных металлов, каталитически активным соединением является пятиокись ванадия. Соединения щелочных металлов не принимают непосредственного участия в каталитическом процессе их роль сводится к увеличению дисперсности пятиокиси ванадия при приготовлении катализатора. Киюра полагает, что когда соединения ванадия осаждаются на силикагель из растворов ванадатов щелочных металлов, ионы натрия или калия образуют первый адсорбционный слой, а ионы ванадата второй слой. Адсорбция ванадата на носителе способствует сохранению его в тонкодисперсном состоянии даже при высокой температуре. При обработке такого катализатора при температуре 400° газовой смесью, содержащей двуокись серы, образуются высокодисперсные частицы пятиокиси ванадия, осаждающиеся на носителе. Присутствие соединений щелочных металлов препятствует росту кристаллов пятиокиси ванадия на носителе из двуокиси кремния. [c.204]

    Иногда, однако, гигроскопическое вещество не является соединением металла. Никель, помещенный над раствором двуокиси серу, становится на вид влажным и подвергается серьезному воздействию в данном случае двуокись серы окисляется до трехокиси серы (или серной кислоты) вследствие каталитической активности поверхности никеля. Эта кислота абсорбирует много влаги, и металл истекает в виде бледнозеленой жидкости, содержащей сернокислый никель зеленовато-черный рыхлый осадок, остающийся на металле, содержит больше сульфита, чем сульфата 1. Точно так же Прайс нашел, что серебро, помещенное над раствором двуокиси серы, покрывается капелька.ми, содержащи.ми сернокислое серебро и серную кислоту в этом случае гигроскопическим веществом является, конечно, серная кислота, а не сернокислое серебро. Приведенные случаи являются крайностями. Металлы, находящиеся на открытом воздухе, обычно не испытывают воздействия испарений концентрированных кислот. Однако свойство продуктов коррозии абсорбировать влагу весьма важно даже при коррозии в обычной атмосфере. Особое вни.мание следует обратить на принцип критической влажности, разработанный Верноном Гадсоном Паттерсоном и Гебсом , Бенгу и Уайтби и др. Вернон нашел, что металл, помещенный в атмосферу, подвергается только очень медленному воздействию, если влажность ниже определенной критической величины однако выше этой величины коррозия внезапно ста- [c.177]

    Ингибитирующие свойства раствора окиси свинца, по-видимому, связаны с сравнительно высоким значением pH (9,2 в работе Льюиса и 7,4 в опытах Мэйна) или с большой связанной щелочностью, как указывает Прейор. Вызывает сомнение, чтобы значение pH в лакокрасочной пленке могло оставаться столь высоким в связи с образованием кислот за счет разрушения связующего, либо за счет продуктов сгорания угля, попадающих в воздух. Однако можно уверенно сказать, что в присутствии основного пигмента среда не будет столь сильно закисляться, как это имеет место в его отсутствии. Возможно, что окись свинца служит для залечивания воздушной окисной пленки, поскольку она в невидимых количествах восстанавливается до металлического свинца. Однако до сих пор является сомнительным, можно ли приписать защитные свойства свинцовых красок только способности пигмента нейтрализовать кислоту или также каталитической активности пигмента, обеспечивающей превращение закисных солей железа в более благородные соли окиси железа на металлической поверхности или же в равной степени и адсорбции продуктов разложения, присутствие которых определили Мэйн и Руйен. Высказывается также мнение, что они разрушают двуокись серы как более коррозионно-активное соединение в городском и промышленном воздухе образец, покрытый слоем краски со свинцовым суриком (без верхнего слоя покрытия), становится через несколько лет белым в атмосфере, не содержащей сажи, так как свинцовый сурик превращается в сернокислый свинец. Для того чтобы создать свое собственное мнение, читатели адресуются к литературе [30]. [c.504]


    В каталитических реакциях ядами являются вещества, которые мешают действию катализатора, ослабляя или полностью уничтожая его активность. Яды проявляют свое действие в малых количествах и при очень низких концентрациях в отношении отравляемого катализатора. Отравляющее действие наиболее характерно для гетерогенных систем. Яды бывают твердые, жидкие и газообразные. Среди твердых каталитических ядсв находятся свинец, медь, марганец, цианиды, арсенаты и некоторые неомыляемые вещества. Ртуть, вода, этиловый и амиловый спирты принадлежат к жидким ядам, а окись угле-рода, двуокись углерода, сероводород, сера, хлор, кислород и водяной пар действуют как газообразные яды. Эти вещества были подразделены соответственно их действию на 1) сильные яды 2) умеренно действую1цие яды и 3) слабые яды [41, 52]. [c.382]

    С увеличением содержания серы энергия активации реакции дегидрирования увеличивалась это еще раз доказывает, что наиболее активными центрами являются те, которые легче всего отравляются каталитическими ядами [307]. Гидрирование беи-зола при 420—450° и давлешш 180—220 ат исследовалось на многочислепных окисных и сульфидных катализаторах [216]. Полное отсутствие активности обнаружили следующие соедиие-ния двуокись олова, двуокись титана, иятиокись ванадия, окись хрома, окись вольфрама, окись железа, металлическое железо, сернистое олово, сернистый ванадий, сернистое железо, сернистый кобальт, сернистый никель. Ограниченную активность обнаружили окись молибдена, сульфиды молибдена и сульфид вольфрама. [c.201]

    Атом кислорода, действительно, имеет возможность оказаться вблизи атома серы уже по одному тому, что очевидным условием реакции является соприкосновение и кислорода. Наличие таких атомов кислорода на поверхности катализатора доказано Г. К. Боре-сковым [2 ] из кинетических соображений. Кроме того, само появление атомов из адсорбированной молекулы кислорода можно объяснить с помощью схемы в той же левой части рисунка. При адсорбции кислорода будут выполняться два условия. Во-первых, молекула кислорода будет предпочтительно ориентироваться к атому серы (из SOj),. как противоположному по своему характеру сравнительно с атомам кислорода же (из Oj). Во-вторых, независимо от того, произойдет ли адсорбция молекулы Og так, что атомы кислорода будут разделены атомами платины (левая часть рис. 6), или же они будут вместе локализоваться по впадинам решетки (наклонная часть рис. 6), — всё-равно, так же как это имеет место в гидрогенизационном катализе,, молекула окажется растянутой действием вандерваальсовых сил контакта в направлении, указанном стрелками, благодаря чему атомы будут стремиться перейти в ближайшие к ним ложбины решетки. Это— также активированное состояние, здесь деформация молекулы делаег ее более реакционноспособной, содействует появлению атомарного кислорода. В то время как двуокись серы на поверхности платины — хорошо подготовленный акцептор, молекула кислорода является также хорошо подготовленным донором кислородных атомов. В целом, возникает новая структура, образовавшаяся в результате адсорбции, в которой деформированные и потому обладак)Щие ослабленными и частично как бы развязанными химическими связями молекулы уже подготовлены к реакции, как находящиеся в более активном состоянии. Естественно поэтому, что следующим — уже легким — этапом явится возникновение именно той молекулы, которая почти без всяких натяжений, по своим размерам и форме, соответствует рельефу поверхности платинового контакта, а именно молекулы серного ангидрида. Каталитический акт, с этой точки зрения, сводится к облегчению химического акта, как переходу от менее вероятного к более вероятному состоянию — переходу от большей деформации сорбированных моле-К) л к меньшей их деформации. [c.35]

    Независимо от того, в виде какого соединения первоначально находятся в катализаторе ванадий и щелочные металлы, они при каталитическом окислении двуокиси серы переходят в сульфованадаты щелочных металлов или дают смесь поливанадатов и сульфатов (при низких температурах—пиросульфатов). В чистом виде эти соединения не могут, однако, служить катализаторами окисления двуокиси серы вследствие низкой температуры плавления (сульфованадат калия плавится при температуре около 500° И образует с избытком сульфата калия эвтектику с температурой плавления около 430° температура плавления дисульфованадата калия еще ниже). Для использования в качестве катализатора эти соединения должны наноситься на носитель с достаточно развитой поверхностью. Во всех рецептурах промышленных катализаторов в качестве носителя применяется двуокись кремния. Роль двуокиси кремния не ограничивается созданием достаточно развитой поверхности активного компонента. При нанесении сульфованадатов на носитель их устойчивость значительно повьпиается благодаря взаимодействию с двуокисью кремния. Для тройных катализаторов, содержащих двуокись кремния, значительно снижается температура превращения активного компонента в сульфат ванадила. Одновременно уменьшается. и скорость образования ванадил-ванадатов, что проявляется в повышении термической устойчивости. Роль двуокиси кремния в промотированных ванадиевых катализаторах и заключается в стабилизации сульфованадатов. [c.206]

    Были описаны некоторые активные катионные катализаторы, которые, насколько известно, не применяли в исследованиях полимеризации. Френсис [44] показал, что растворы хлористого алюминия в некоторых органических растворителях имели необычно высокую активность при алкилировании и изомеризации в сравнительно мягких условиях, когда А1С1з присутствовал в молярном избытке. В качестве растворителей использовали ацетон, двуокись серы, этилацетат, этиловый эфир, нитробензол, бензофенон, изопропилацетат и изопропиловый эфир, В присутствии системы фтористый алкил — фтористый бор протекала реакция перехода водорода при само-алкилировании изобутилена при—80° [45]. Мак-Коли и Лайен [46] вызывали диспропорционирование алкилбензолов действием НР — ВРз и нашли, что ароматические комплексы получались также в присутствии фтористого водорода из других фторидов металлов Т1р4, ЫЬРб, ТаРб [47. Все эти каталитические системы в соответствующих условиях должны проявлять активность в полимеризации. [c.196]


Электронная теория кислот и оснований (1950) -- [ c.26 , c.138 , c.144 ]




ПОИСК





Смотрите так же термины и статьи:

Активность каталитическая

Серы двуокись



© 2025 chem21.info Реклама на сайте