Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фазовый анализ сущность

    Сущность динамического метода построения диаграмм состояния состоит в построении методом термического анализа кривых охлаждения (или нагревания) образцов в координатах температура— время. Если фазовое превращение сопровождается тепловым эффектом (а практически все фазовые превращения сопровождаются изменением энтальпии системы), то это будет фиксироваться на указанных кривых в зависимости от характера равновесия (числа степеней свободы системы) в виде точки перегиба, отвечающей [c.282]


    В физических системах, т. е. в системах, составные части которых химически не взаимодействуют друг с другом, число независимых компонентов равно числу составных частей системы. В химических системах (составные части таких систем участвуют в химических реакциях) число независимых компонентов определяют по разности число составных частей минус число химических реакций, возможных в данной системе при заданных условиях. Фазовые равновесия изучают при помощи физико-химического анализа. Для этого устанавливают зависимость между измеримыми на опыте физическими свойствами (/пл, (кип, Л- плотностью и др.) и химическим составом систем. Изучение зависимости температуры кристаллизации (плавления) от состава системы составляет сущность термического анализа. Диаграммы состояния, построенные по данным термического анализа в координатах температура кристаллизации — состав, называются фазовыми диаграммами плавкости. Количество твердых фаз, образующихся при постепенном охлаждении расплавов заданного состава, определяют на основе фазовых диаграмм плавкости, руководствуясь правилом рычага или правилом отрезков (см. пример 1). [c.67]

    Дозирование газа, приведенного в равновесие с жидкостью. В последнее время все большее распространение начинают получать методы газохроматографического анализа растворов, в основе которых лежит использование принципа фазовых равновесий. Сущность этих методов состоит в том, что анализу подвергается не исследуемый раствор, а газ, находящийся с ним в термодинамическом равновесии. Весьма популярно определение примесей в растворах по их содержанию в равновесном с этим раствором газе. Этот прием, получивший название анализ равновесного пара , часто используется для идентификации и количественного определения летучих веществ в различных, в том числе природных и биологических, объектах, а также при изучении [c.29]

    Еще более перспективен и интересен метод молекулярной динамики для исследования структуры и расчета термодинамических свойств различных молекулярных моделей [7]. Этот метод также стал возможным лишь в век новой вычислительной техники. Сущность его заключается в интегрировании уравнений движения системы многих частиц, т. е. в использовании только механической модели молекулярной структуры вещества. Усреднение различных микроскопических величин вдоль траектории точки в фазовом пространстве позволяет найти макроскопические термодинамические величины. Но важнее всего то, что таким образом мы можем построить картину молекулярного строения газа или жидкости и исследовать ее флюктуацию и ее мелкие детали с большей точностью и более тонко, чем это можно сделать при анализе экспериментальных данных по рассеянию излучений. [c.333]


    Сущность метода. Принцип, положенный в основу описываемого метода фазового анализа, является тем же, что и принцип, который был применен для термографического фазового анализа смесей, — он основан на независимости процессов, протекающих в веществах, находящихся в виде механической смеси. Следовательно, реакции диссоциации и разложения протекают практически при определенных для каждого вещества температурах, отсюда температуры диссоциации различных веществ являются своего рода константами (при одном и том же внешнем давлении). [c.278]

    Таким образом, сущность термического анализа заключается в изучении фазовых превращений, происходящих в системах или индивидуальных веществах, по сопровождающим эти превращения тепловым эффектам и по соотве вующим температурам. Исследуемый образец подвергают постепенному нагреванию или охлаждению с непрерывной регистрацией температуры. В случае возникновения в веществе того или иного превращения изменяется скорость его нагревания или охлаждения за счет поглощения или выделения теплоты. [c.216]

    Оптические методы, обладающие высокой чувствительностью и пригодные для изучения вещества в любом агрегатном и фазовом состоянии, обеспечивают весьма ценный массив данных о природном органическом сырье Недостаток этой фуппы методов для количественного анализа заложен в их физической сущности интенсивности линий поглощения, излучения или рассеяния в электронных и колебательных спектрах связаны с количеством химических связей, функциональных групп и структурных фрагментов, ответственных за них, нелинейно Для получения количественной структурной информации необходимо учитывать вероятности переходов, полярность и поляризуемость связей, разности энергий возмущенных состояний итд В итоге оптическую спектроскопию можно признать полуколичественным методом частичного определения строения природного органического сырья. [c.9]

    Изучение зависимости температуры кристаллизации (плавления) от состава системы составляет сущность термического анализа. Диаграммы, построенные по данным термического анализа температура кристаллизации— состав , называются фазовыми диаграммами плавкости. Определение количества твердых фаз, образующихся при остывании расплавов заданного состава, осуществляется на основе фазовых диаграмм плавкости по правилу рычага или правилу отрезков. [c.98]

    Термический анализ служит -для исследования многих физических и химико-технологических процессов, сопровождающихся выделением или поглощением тепла. К ним относятся физические — плавление, кипение, возгонка и испарение, полиморфные превраще ния, переход из аморфного состояния в кристаллическое химические— реакции диссоциации и дегидратации, восстановления и окисления, обмена и изомеризации. Одним из способов изучения таких процессов и реакций является измерение температур. Этот метод анализа целесообразно использовать для исследования фазового состава твердых неорганических материалов, установления температурных границ существования катализаторов, определения теплоемкости и теплопроводности. Сущность анализа состоит в изучении фазовых превращений, происходящих в индивидуальных веществах или сложных системах, по термическим эффектам, сопровождающим эти превращения. [c.374]

    В настоящее время имеются труды по отдельным группам минералов, В работе Е. Я. Роде [У-146, 149] подробно разработан термоанализ марганцевых руд, а также железных [У-147, 111-163, 164], свинцовых [111-165, 166] и других В. П. Ивановой собран достаточно полный материал по хлоритам [У-ЗО] Цветковым А. И. [111-216 218, У-199 201] составлены сводки термограмм по ряду различных минералов. Много работ посвящено термической характеристике силикатов и глин. Однако термоаналитические данные отдельных классов веществ являются только одной из возможных областей применения термографии и по существу представляют собою лишь качественный фазовый анализ различных смесей. Между тем, возможности применения термографии значительно шире. Этот объективный и чувствительный метод физико-химических исследований несомненно позволит глубоко проникнуть в сущность ряда явлений которые иными методами не могут быть изучены. [c.8]

    Для анализа пиросиликатных реакций О. П. Мчедловым-Пет-росяном и В. И. Бабушкиным был разработан специальный подход, так называемый принцип расчета по составам. Сущность этого принципа заключается в том, что для всех реакций в данной системе в левых частях уравнений берется одинаковая масса исходных веществ. Тогда каждая из возможных реакций будет отнесена к одной и той же массе исходных веществ и, как следствие, соответствующие значения AG оказываются сопоставимыми. Благодаря этому для определенного диапазона составов может быть составлен ряд термодинамической последовательности (устойчивости), который может быть использован для определения наиболее устойчивых соединений. Полезность такого подхода подтверждается результатами выполненного Н. А. Ландия и О. П. Мчедловым-Петросяном термодинамического анализа твердофазовых реакций в одной из наиболее важных в техническом плане бинарных силикатных систем, характеризующихся сложностью фазовых отношений,— системе СаО—SiO2. [c.296]


    Название процесса, понятия, раздела науки, естественно, так или Ш1аче должно отражать их сущность, их содержание. В литературе рассматриваемый вид анализа до последнего [. ремеии был известен под названием рационального, или фазового. Почти все исследователи, работавшие в этой области, считают, что ни одно из этих названий не вскрывает достаточно полно его сущности [1, 7, 9 и др.]. [c.9]

    Вернемся теперь к рис. 10 и посмотрим, какие непосредственные сведения о структуре системы полимер—растворитель можно почерпнуть из анализа этой фазовой диаграммы. Прежде всего будем подниматься от более низких к более высоким температурам вдоль оси ага = 1. Если полимер аморфный, он последовательно проходит через все три релаксационных ( физических состояния стеклообразное, высокоэластическое и вязкотекучее. Они представляют собой разновидности жидкого фазового состояния с раз ][ичной степенью, замороженности сегментальной подвижности цепей. Все это хорошо известные вещи, но о них иногда забывают при рассмотрении фазовых равновесий. В сущности, для системы аморфный полимер—растворитель всегда реализуется фазовое равновесие типа жидкость—жидкость (ибо, говоря о равновесии, мы должны принимать во внимание именно фазовое, а не релаксационное состояние той или иной двухкомпонентной фазы. При достаточно высокой температуре, но ниже ВКТС, раствор вероятнее всего распадается на два обычных раствора различной концентрации. Нередко, используя такое разделение на две жидкие фазы для фракционирования (практически в этом случае чаще варьируется растворитель, но вскоре мы убедимся, что в принципе это ничего не меняет), говорят об образовании коацервата — из-за внешней аналогии с коацервацией в амфифильных электролитных системах. [c.103]

    Среди основных стадий получения связующих определяющее значение принадлежит формованию, поскольку именно этот процесс позволяет наиболее существенно регулировать свойства продукта и обусловливает требования к другим технологическим стадиям. Сущность способа формования полимерных изделий мокрым методом сводится к смещению двух жидких потоков (раствора полимера и осадительной ванны). При этом происходят фазовые превращения, в результате чего один из компонентов системы (полимер) переходит в твердое состояние. Анализ показывает, что протекающие при формовании процессы можно разделить на физико-химические (связанные в основном с выделением полимера из системы) и гидродинамические (определяющие характер смещения потоков). Физико-химические закономерности формования химических волокон и ВПС принципиально не отличаются, хотя имеются некоторые особенности, связанные со спецификой способа получения и требованиями к свойствам продукта. Их целесообразно рассмотреть после обсуждения гидродинамического аспекта формования, где выявляются наиболее существенные различия в прлучении волокон и ВПС. [c.130]

    В свете изложенного сущность термографии заключается в изучении фазовых превращений, совершающихся в системах или индивидуальных веществах, по сопровождающим эти превращения тепловым эффектам. Исследуемый образец подвергается постепенному нагреванию или охлаждению с непрерывной регистрацией температуры. В случае возникновения в веществе того или иного превращения, сразу изменяется скорость его нагревания или охлаждения за счет поглощения или выделения тепла. Изменения скорости нагрева (охлаждения), регистрируемые тем или иным способом, позволяют а) определять в растворах или сплавах зависимость температур фазовых изменений от состава б) находить в механических смесях наличие тех или иных аеществ по характерным для них температурам диссоциации, либо разложения, либо другого рода фазовых превращений. В первом случае мы пользуемся классическим методом термического анализа, получившим основное применение в металловедении и при изучении соляных равновесий во втором — методом фазовой характеристики смесей (осадочные горные породы, руды, иловые отложения, соляные месторождения и т. п.). [c.12]

    В связи с изложенным использовать аппарат механики и термодинамики можно, лишь проанализировав условия его примейй-мости и выделив соответствующие степени свободы (или области фазового пространства) биологической системы. В сущности, это делается при рассмотрении любой искусственной конструкции. Например, рассматривая газ в цилиндре с поршнем, мы Заранее выделяем механические степени свободы (связанные с поршнем) и термодинамические (связанные с газом). В большинстве случаев разделение столь очевидно, что внимание на этом не акцентируется. В биологии это не столь тривиально и требует специального анализа. Дело осложняется тем, что даже в физике Соотношения между Механикой, статистической физикой и теорией информации являются сейчас предметом Дискуссии. [c.259]


Смотреть страницы где упоминается термин Фазовый анализ сущность: [c.103]    [c.128]    [c.23]    [c.242]   
Введение в термографию Издание 2 (1969) -- [ c.7 , c.12 , c.184 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ фазовый



© 2025 chem21.info Реклама на сайте