Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы, состоящие из многих частиц

    Многочисленные исследования, проводившиеся на протяжении многих десятилетий, показали, что коллоидное состояние вещества—это высокодисперсное (сильно раздробленное) состояние, в котором отдельные частицы являются не молекулами, а агрегатами, состоящими из множества молекул. Приняв это определение коллоидного состояния (коллоидной системы), можно сформулировать те принципиальные особенности, которые отличают коллоидные системы от истинных растворов. Поскольку коллоидные частицы состоят из множества молекул, то,, очевидно, им могут быть приписаны все термодинамические свойства Фазы. Равным образом молекулы среды, в которой диспергированы коллоидные частицы, образуют другую фазу. Следовательно, всякий коллоидный раствор является гетерогенной, многофазной (в простейшем случае двухфазной) системой в отличие от истинных растворов, которые являются гомогенными системами. Отсюда же следует вывод, что поскольку всякий коллоидный раствор представляет гетерогенную систему, условием ее образования является нерастворимость (или очень малая растворимость) вещества одной фазы в веществе другой фазы, ибо только между такими веществами могут существовать физические поверхности раздела, [c.12]


    Наряду с дисперсными системами в курсе коллоидной химии изучают свойства растворов высокомолекулярных веществ (ВМВ). Эти системы принципиально отличны от коллоидных систем. Растворы ВМВ — гомогенные термодинамически устойчивые обратимые системы, которые образуются самопроизвольно и по своей природе являются истинными молекулярными растворами. Однако при всех различиях их объединяет с коллоидными системами такой важный признак, как размер частиц. Молекулы ВМВ — макромолекулы как и коллоидные частицы, состоят из многих тысяч атомов. С этим связаны схожесть оптических свойств, малая скорость диффузии, низкое осмотическое давление у тех и других систем. [c.460]

    Значения параметров (констант) сополимеризации найдены для многих мономерных пар [106] и их можно непосредственно использовать для предсказания состава сополимера в гомогенных системах. Однако в гетерогенных системах на общую реакционную способность влияют относительные концентрации мономера в зоне полимеризации. Соответственно, эффективная реакционная способность сомономеров в дисперсионной полимеризации значительно изменяется в связи с их селективной абсорбцией частицами полимера. Качественно эффект состоит в увеличении кажущейся реакционной способности у таких сильно полярных мономеров, как метакриловая кислота, преимущественно распределяющихся в частицах полимера, и в уменьшении ее у таких неполярных мономеров, как бутилакрилат или стирол, которые преимущественно остаются в фазе разбавителя. Изменение реакционной способности, обусловленное различием в абсорбции (дифференциальная абсорбция) двух мономеров, можно учесть посредством фактора К [c.214]

    Рассеяние света в какой-то степени свойственно любой среде. Но наиболее интенсивное светорассеяние происходит в условиях, когда луч света проходит через дисперсную систему, частицы которой имеют размеры меньше длины волны падающего света и удалены друг от друга на расстояния, значительно превосходящие длину волны. Сущность процесса светорассеяния состоит в том, что световой луч, встречая на своем пути частицу, как бы огибает ее и несколько изменяет свое направление. Явление светорассеяния присуще многим дисперсным системам, но особенно коллоидно-дисперсным, или ультрамикрогетерогенным, с размером частиц 10 —10 м. [c.388]


    Во всех предыдущих параграфах мы рассматривали движение одной частицы в заданном внешнем поле. Исследуем, как можно обобщить эти результаты на случай движения многих частиц. Если система состоит из N взаимодействующих частиц, то при учете конечной скорости взаимодействия у ке классическая энергия взаимодействия зависит от всей истории движения частиц, а не определяется полол<ением частиц в данный момент времени. Однако, если относительные скорости частиц в системе малы по сравнению со скоростью света, то конфигурация системы (т. е. распределение частиц в пространстве) мало изменяется за время, необходимое для передачи взаимодействия между частицами. В этом случае с точностью до величин пв-рядка (у/с)2 (см. [54] и 63), можно определить классическую функцию Гамильтона как функцию только координат и импульсов всех частиц системы. Если же скорости частиц сравнимы со скоростью света, то необходимо рассматривать наряду с частицами и поле, которое передает взаимодействие, поэтому система будет -обладать бесконечным числом степеней свободы. [c.329]

    При изучении материального мира принято выделять исследуемый объект (мысленно или реально) и называть его системой, а все остальное рассматривать как окружающую среду. Система может быть изолирована от окружающей среды или взаимодействовать с ней. Она может состоять из отдельной частицы (молекулы, атома, электрона и т. д.) или из многих частиц (определенного количества газа, жидкости, твердого вещества и т. д.). Поведение системы полностью определяется природой образующих ее частиц, характером их взаимодействия между собой и системой с окружающей средой. Химическая система — это система, образованная из взаимодействующих ядер и электронов. Именно такие системы будут в центре рассмотрения настоящего курса. [c.4]

    Для многих композиций на основе дисперсных систем незначительна глубина проникновения в пласт. Композиция, попавшая в пласт в зоне нагнетательной скважины, не может двигаться вглубь пласта при осуществимых на промысле перепадах давления из-за высоких напряжений сдвига при низких скоростях деформации. Таким образом, важным свойством для дисперсных систем являются размеры частиц. Чтобы коллоидная система достаточно глубоко проникала в пласт, необходимо, чтобы размеры большинства частиц не превышали размеров пор. Если система состоит из крупных частиц, размеры которых существенно превышают размеры пор, фильтрация в глубине пласта не представляется возможной. Воз- [c.24]

    В системах сложения под структурой мы понимаем форму элементов и их взаимное расположение, которое связано с некоторым распределением контактов между ними. Последнее, впрочем, не вполне обязательно, если учесть, что к пористым средам можно отнести коллоидные системы типа золей, где число контактов между частицами чаще всего равно нулю. Продукты спекания порошков также состоят из частиц, контактирующих друг с другом по участкам площади, а не в точках. Однако многие системы состоят из соприкасающихся частиц, и потому вопрос о контактах нельзя исключить из описания таких систем. [c.275]

    Но важно, что и в этом случае точный по идее метод молекулярной динамики, суть которого состоит в интегрировании уравнений движения системы многих частиц, представляет собой надежную основу для проверки любого рода приближенных выражений для потенциальной энергии взаимодействия. [c.364]

    Это случай так называемого одноэлектронного атома. В более сложных системах, когда заряженных частиц много, уравнение потенциальной энергии состоит из суммы таких же кулонов-ских членов. [c.113]

    Рассмотрим простые процессы, в которых происходит изменение только одного какого-нибудь вида (например, испарение жидкости, диссоциация молекул на атомы или атомные группы или обратные им процессы). Пусть система состоит из достаточно большого числа частиц, чтобы к ней самой и к процессам, в ней протекающим, были применимы статистические методы. В таком случае возможна следующая трактовка многих процессов. [c.295]

    Физическая природа синергетики состоит в том, что в нелинейной области, вдали от равновесного состояния, система теряет устойчивость и малые флуктуации приводят к новому режиму—совокупному движению многих частиц. [c.280]

    Второе существенное допущение состоит в том, что линейные размеры частиц малы по сравнению с длиной волны падающего света. Тогда в любой точке объема, занятого частицей, напряженность электромагнитного поля может считаться почти одной и той же (рис. 5). Электромагнитное поле, поляризующее вещество частиц, во многих случаях может рассматриваться как однородное, так как по сравнению с длиной волны видимого света, которая имеет порядок 0,5 мкм, частицы в обычных коллоидных системах [c.19]

    Если система однородна, т. е. в пределах ее не происходит каких-либо скачкообразных изменений свойств, и в то же время состоит из нескольких различных типов частиц, то она называется раствором. В широком смысле этого слова растворы могут иметь любое агрегатное состояние — газовое, жидкое или твердое. Газы могут смешиваться при не слишком высоких давлениях в любых соотношениях и независимо от их химической природы. Смешение происходит в результате свойственной всем макроскопическим системам тенденции к переходу в более хаотичное состояние. Этот вопрос подробнее рассматривается в следующей главе. Здесь отметим лишь, что так как межмолекулярные взаимодействия в газе невелики, этой тенденции ничто не противодействует, что и приводит к неограниченной смешиваемости газов. Существуют растворы и в твердом состоянии, например многие сплавы металлов, однако возможности их образования ограничены. Как нетрудно понять из предыдущего параграфа, твердый раствор может образоваться лишь, если два сорта молекул атомов или ионов могут заменять друг друга в элементарной ячейке кристалла. В дальнейшем в этом курсе речь будет идти только о жидких [c.120]


    В биохимии часто приходится иметь дело с макромолекулами, или полимерами. Белки и некоторые углеводы являются полимерами в подлинном смысле слова, и многие их свойства непосредственно обусловлены структурой полимерных систем. В следующей главе нам предстоит познакомиться со специфическим классом веществ, называемых коллоидами они представляют собой частицы приблизительно таких же размеров. Из подобных частиц состоят кровь, мышцы, кожа, волосы они входят в состав живой клетки—строительного кирпичика любой живой системы. [c.477]

    Вопрос о том, из чего состоит вещество, возникает при любой работе химика - при разработке и реализации технологических процессов, в исследовательской или заводской лаборатории, при проведении самых разнообразных экспертиз. Химической идентификацией, т. е. установлением вида частиц (молекул, атомов, ионов, радикалов), составляющих исследуемую систему, занимается аналитическая химия. В предыдущих разделах этой книги мы уже много раз убеждались, что химические системы бесконечно разнообразны, столь же разнообразны задачи и методы аналитической химии. В зависимости от поставленной задачи различают несколько видов анализа. [c.441]

    Многие химические и физические процессы могут быть объяснены с помощью простых моделей строения атома, предложенных Резерфордом, Бором и другими учеными. Каждая из таких моделей, чем-то отличаясь, тем не менее предполагает, что каждый атом состоит из трех видов субатомных частиц протонов, нейтронов и электронов. Это далеко не полная картина, но для наших целей этого пока достаточно. Протоны и нейтроны образуют ядро атомов. Ядро намного тяжелее электронов. В ядре сосредоточена почти вся масса атома, но ядро занимает лишь ничтожную часть объема. Электроны движутся (часто говорят вращаются ) вблизи ядра по определенным законам. Ядро может быть описано всего лишь двумя числами — порядковым номером атома в периодической системе элементов (его называют атомным номером и обозначают символом ) и массовым числом символ А). [c.15]

    Таким образом, готовый ксерогель — корпускулярная система, состоящая из сферических (аморфных) или ограненных (кристаллических) частиц, связанных в пространственный каркас большей или меньшей плотности. Как и многие аморфные ксерогели, силикагель и алюмосиликагель состоят из глобул (рис. 6). Гели окиси вольфрама состоят из стержнеобразных частиц [13], сульфата бария — веретенообразных частиц [14], пятиокиси ванадия — палочкообразных и нитевидных частиц [9]. Различные модификации гелей гидроокиси алюминия имеют форму глобул, призм, пирамид, игл [9]. [c.10]

    Термодинамической основой такого процесса перехода от безводных форм к гидратированным является повышенная растворимость безводных золевых частиц по отношению к гидратным формам полимерных силикатов. Поверхность вновь образующейся фазы, по нашим оценкам, составляет 1500—2000 м /г. Скорость процесса затухает в течение 1—5 сут в связи с уменьшением pH раствора и появлением отрицательных зарядов на вновь образующейся поверхности или, иными словами, за счет адсорбции гидроксильных ионов на растущей фазе. Описываемый процесс соответствует многочисленным наблюдениям при определении растворимости кремнезема в щелочных средах, когда во многих случаях равновесная концентрация кремнезема устанавливается сверху, т. е. со стороны пересыщенных растворов. Такого же рода процесс происходит при гидратации цементных фаз, где раствор оказывается пересыщенным по отношению ко вновь образующимся гидратным формам силикатов. В высокомодульных полисиликатных системах к моменту затухания процесса большая часть кремнезема остается в исходном безводном состоянии. Таким образом, поли-силикатный раствор, образованный добавлением к золю концентрированной щелочи, состоит из уменьшившихся в размерах частиц исходного золя, высокодисперсной фазы гидратированного кремнезема с размерами частиц не выше 5—7 нм и кремнезема, находящегося в растворе в виде ионных олигомерных форм. [c.67]

    Операторы действуют в пространстве X и предполагаются самосопряженными относительно введенного там скалярного произведения. Пространство ЗС - это, как правило, пространство состояний системы. В случае одной бесспиновой частицы элементами пространства ЗС являются волновые функции ф(г) = ф(х, у, z), т.е. интегрируемые с квадратом модуля функции трех переменных. Волновая функция одного электрона зависит от четырех аргументов добавляется спиновая степень свободы, а волновая функция многозлектронной системы - от многих четверок аргументов, относящихся к отдельным электронам. В еще более сложных случаях пространство состояний может состоять из векторных, или тензорных функций многих переменных и т.д. [c.12]

    Общим во всех явлениях образования упорядоченных структур при протекании необратимых процессов в сильнонеравновесных открытых системах является совместное (кооперативное) движение или химическое превращение больших групп молекул. Иногда для таких процессов используется общий термин синергетика (от феческого слова synergos — совместно, или кооперативно, действующий). Физическая природа синергетики состоит в том, что в нелинейной области, вдали от равновесного состояния, система теряет устойчивость, и малые флуктуации приводят к новому режиму — согласованному движению или превращению сразу многих частиц. [c.350]

    Наиболее простым и распространенным приемом нахождения квантового спектра системы многих частиц является запись и диаго-нализация ее гамильтониана в представлении чисел заполнения. Поскольку гамильтониан (6.1) уже диагонализирован по к-состоя-ниям, переход к новым специальным операторам можно осуществить с помощью следующих линейных преобразований для заданного значения к  [c.120]

    Строение дыхательной системы описано во многих книгах и статьях, посвященных опасности пыли Ч Дыхательная система состоит из ряда разветвленных ходов, уменьшающихся по ширине, но растущих в числе. Воздух, вдыхаемый через нос или рот, последовательно проходит через трахею, бронхи, бронхиолы, альвеолярные ходы (диаметром 0,2 мм) и, наконец, поступает в альвеолы (диаметром 0,3 мм). Волоски, выстилающие полость носа, и его маленькие косточки, представляют собой эффективную фильтрующую систему для крупных частиц, а ресиички, покрывающие дыхательные пути выше бронхиол, улавливают и переносят в рот нерастворимые частицы, осаждающиеся в этой области дыхательной системы. Только очень мелкие частицы проникают в глубину легких и осаждаются там в количествах, зависящих от их размера. [c.325]

    Лиозоли часто называют истинно коллоидными системами. Размеры частиц дисперсной фазы в ннх не превышают 100 нм. Основное качественное отлнчне лиозолей от микрогетерогеиных систем состоит в том, что частицы золей участвуют в молекулярнокинетическом движении и благодаря этому обладают многими свойствами истинных растворов. [c.186]

    Рассмотрим консервативную ситему частиц. Консервативной называется такая система, в которой (классические) потенциальные энергии частиц зависят только от их пространственных координат ди а не от моментов . Атомы и молекулы можно считать консервативными системами, если пренебречь магнитными взаимодействиями для легких атомов и образованных из них молекул такое допущение является вполне разумным, так как магнитные силы в них много меньше действующих между частицами (электронами и ядрами) электростатических сил. Если система состоит из п частиц, то для описания их положения в пространстве необходимо Ъп координат в качестве таковых мы используем Зп декартовых координат для всех частиц, так что координатами частицы г являются (д <, у гг). [c.36]

    Электрический потенциал и структура двойных электрических слоев мало зависят от размеров частиц. Однако увеличение удельной поверхности в дисперсной системе приводит к повышению концентрации противоионов двойного слоя,что в свою очередь может влиять на многие свойства системы, в том числе и на свойства этого слоя. Если противоионами в двойном электрическом слое являются Н+- или ОН -ионы, то наблюдается так называемый суспензионный эффект, сущность которого состоит в том, что значение рНс суспензии отличается от значения рНф выделенного из нее фильтрата. Количественно суспензионный эффект характеризуется величиной ДрНсэ = рНс—рНф, которая возрастает с увеличением концентрации дисперсной фазы в суспензии, а при постоянной массовой концентрации дисперсной фазы — с увеличением ее дисперсности, т. е. эффект повышается с увеличением межфазной поверхности в суспензии. Значение суспензионного эффекта уменьшается с повышением концеитрацпи электролитов в системе, что еще раз подтверждает указанную причину возникновения этого эффекта. Знак суспензионного эффекта (ДрНсэ) совпадает со знаком заряда поверхности (частиц, мембран). [c.343]

    Точное решение этой задачи для системы из четырех частиц невозможно, поэтому пользуются прнблнженныдн методами (например, метод возмущений), которые были развиты еще при решении классической задачи многих тел в небесной механике. Предположим, что наша молекула Из в нулевом приближении состоит из двух невзаимодействующих Н-атомов а я Ь, находящихся в основном состоянии (15-состояние). Тогда полная энергия равна сумме энергий отдельных атомов водорода [c.96]

    Битумные вещества могут не только сами переходить в раствор, но и вызывать растворение и небитумных веществ, адсорбируясь на поверхности их частиц и сообщая им индуцированную растворимость (по Пескову), или, как иначе говорят, служат защитными коллоидами. Таким образом, небитумные вещества могут входить в состав коллоидных систем, из которых, например, состоят многие битумы поэтому битумы могут содержать небитумные вещества не только в виде механической примеси . Это очень осложняет исследование, так как часто не удается найти метод для различения и отделения веществ разных групп, столь тесна объединенных в коллоидной системе, тем более, что адсорбция битумных веществ часто необратима. [c.158]

    Одна из первых задач физики плазмы состоит в том, чтобы найти совокупность уравнений, необходимых для описания рассматриваемой системы в данном диапазоне изменения параметров. В частности, с чрезвычайной осторожностью следует обращаться с кулоновским потенциалом. В рамках уравнения типа уравнения Больцмана его можно учесть либо в столкновительном члене, либо путем введения силы, обусловленной электрическим и магнитным полями, которые в свою очередь в соответствии с уравнениями Максвелла создаются зарядами и движением частиц. Проблема, с которой мы сталкиваемся в первом подходе, состоит в учете одновременного взаимодействия многих частиц, тогда как во втором подходе требуется вычислять быстрые локальные изменения поля, вызванные индивидуальными частицами. В любом случае следует проявлять осторожность, чтобы дважды не учесть одно и то же взаимодействие. Эта задача рассматривалась разными авторами, включая Ростокера и Розенблюта [175], Гёрнси [93], Саймона и Харриса [189] и Ленарда [130] обзоры этого направления дали By [225] и Монтгомери [160]. Исследования шли по пути, указанному в гл. 3, но с учетом новых явлений, описанных выше. Хотя эти исследования и представляют большой интерес и имеют важное значение, их рассмотрение потребовало бы значительно больше места, чем мы можем выделить им в настоящей книге поэтому интересующихся читателей мы отсылаем к цитированной выше литературе. Здесь мы укажем лишь на некоторые результаты, имеющие прямое отношение к излагаемой теории. [c.413]

    Развивающиеся вокруг глинистых частиц гидратные оболочки оказывают на них расклинивающее воздействие. Гидратированные частицы, раздвигаясь, увеличивают объем системы, глина набухает (рис, I, 17, а). При этом ослабляется сцепление между частицами глины, ее прочность уменьшается и порода размокает, 11сли глинистая порода состоит из минералов с раздвижной кристаллической решеткой (монтмориллонит, вермикулит), то происходит гидратация межпакетного пространства, обусловливающая виу-трикристаллическое набухание (рис, 11.17,6). Так как у этих минералов вклад суммарной площади оснований пакетов в значение удельной поверхностп преобладает (до 80%), они набухают во много раз лучше минералов с жесткой кристаллической решеткой. [c.63]

    Основное уравнение статистической термодинамики f=i/o— -кТ1п2 позволяет выразить все термодинамические функции через величины, характеризующие свойства молекул, т. е. позволяет связать термодинамические функции с определенной молекулярной моделью системы. Это крупный научный результат, особенно важный для химии. На всех уровнях развития естествознания химики стремились решить вопрос о том, как наблюдаемая на опыте способность вещества вступать в различные реакции связана со строением частиц, из которых это вещество состоит. В 1901 г. Гиббс получил в общем виде написанное выше соотношение и нашел общие выражения для и, Н, О, Су, Ср и т. п. через суммы по состояниям. Однако при этом он совсем не рассматривал другую сторону вопроса — как вычислить саму величину 2 для реальной системы. Для этого в то время механика молекул располагала возможностью подсчитать только вклад, связанный с поступательным движением частиц. Кроме того, поскольку вычисление Р, О и 5 требует операций с абсолютной величиной 2, без применения квантовой механики такой расчет вообще нельзя было завершить, так как для этого необходймо использовать постоянную Планка к. Поэтому статистические расчеты термодинамических величин были начаты фактически только в двадцатые — тридцатые годы и продолжаются до настоящего времени. Расчет сумм по состояниям 2 для реальных систем — достаточно сложная и далеко не решенная задача. Однако принципиальная ясность здесь есть, и существо дела сейчас хорошо разобрано на многих примерах. Простейший из них — свойства многоатомного идеального газа со многими независимыми степенями свободы. [c.215]

    И смеси, и растворы — многокомпонентные системы. Принципиальная разница между ними состоит в наличии у первых и отсутствии у вторых поверхностей раздела между компонентами, первые гетерогенные, а вторые — гомогенные системы. Обычно при рассмотрении свойств механических смесей наличием поверхностей раздела и их свойств пренебрегают. Однако если степень дисперсности увеличивать, то роль поверхностных свойств возрастает. Ведь очевидно, что атомы (молекулы, ионы и т. п.) поверхностного слоя находятся в иных энергетических условиях, что внутри тела, и поэтому их свойства отличаются от объемных свойств. Например, поверхностная энергия 1 моль хлорида натрия при условном дроблении кристалла на кубики от размера ребра 0,77 см (1 г Na l) до минимально возможных размеров частиц (1 нм) возрастает с 3-10 Дж/моль до 25,2-10 Дж/моль, т. е. в миллионы раз. Вместе с энергией ребер частиц это составляет около 35 кДж/моль — порядок энтальпии многих реакций. [c.254]

    Я. Берцелиус, как и многие ученые того времени, утверждал, что электричество есть первая действующая сила окружающей нас природы. На основании продуктов разложения растворов солей, кислот и ос1[овапий, выделяющихся на разноименных полюсах, он сделал вывод о том, что молекулы каждого сложного вещества состоят из электроположительной и электроотрицательной частей. Я. Берцелиус считал, что все соли содержат основание и кислоту. Поэтому он представлял формулу сульфата калия КОЗОз как соединение алектроположительпой частицы КО с электроотрицательной 80з. Берцелиус, по словам французского химика А. Вюр-ца, придал дуалистической системе необычайную степень определенности уже одним способом изображения солей посредством формул . Это правило он распространил на все химические соединения. [c.137]

    Бернал построил много моделей жидкости как плоских, так и трехмерных. При их построении он руководствовался законом 1/ при размещении молекул в пространстве и допускал возможность варьирования трех параметров Л/г —числа ближайших соседей в координационной сфере — среднего расстояния между координационными сферами и Л,— расстояния между соседями в координационной сфере. Его задача состояла в построении системы связанных частиц, для которых характерен закон 1// и которые имеют меньшую 10% плотность, чем плотность твердого тела. Одной из его моделей была модель, выполненная из пластилиновых шаров, которые были нерегулярно упакованы тем способом, как это было уже рассказано, и затем равномерно сжаты. Этот метод использовал ботаник Марвин для исследования формы клеток растений. Как эта модель, так и другие (шар и стержень и т. д.) показали, что в нерегулярной системе, близкой по плотности к плотности простой жидкости, преимущественно имеет место пятиугольная симметрия. Из исследуемых 65 пластилиновых шаров после всестороннего сжатия было найдено в получившихся после такой процедуры многоугольниках абсолютное преобладание пятиугольных граней. Такой тип симметрии отсутствует в регулярной кристаллической структуре и встречается только в нерегулярных сложных структурах сплавов, классифицированных Френком. [c.97]

    Системы, изучаемые физической химией, — газы, жидкости, растворы, — состоят из сравнительно небольших молекул, редко содержаш,их более одного-двух десятков атомов. Между тем суш,ествует огромное количество сис тем, отдельные частицы которых включают много сотен и тысяч атомов и достигают иногда микроскопически видимых размеров. Во многих случаях эти частицы представляют собой зародыши кристалликов, маленькие обломки различных кристаллических решеток или аморфных веществ, или капельки жидкостей. В случае кристаллических решеток, они по природе связей, соединяющих их структурные элементы, могут быть разделены на ионные (подобные решетке ЫаС1), атомные (решетки алмаза, графита), молекулярные (решетки антрацена, 2п8) и металлические (решетки Аи, Ag) в структурном отношении частицы относятся к трехмерным или слоистым решеткам. Так, например, в алмазе (рис. 1) весь кристалл можно рассматривать как одну молекулу, в которой все атомы углерода связаны в пространственную сетку одинаковыми, тетраэдри-чески расположенными, ковалентными связями С—С [c.4]

    Существует много патентов, в которых предлагается сочетание Кислот с добавлением солей натрия или солей аммония, когда воздействие оказывают как кислоты, так и соли. Часто при этом в системе имеется добавочный свободный аммиак. В том случае, когда реакции протекают при комнатной температуре, тот факт, что осадки будут состоять из микроскопических частиц микропористых силикагелей, по-видимому, не вызывает сомнений. Такие силикагели находят незначительное применение в качестве дисперсных наполнителей,, но широко используются для других целей. Когда же реакции проводятся в горячих растворах, происходит формирование совсем других продуктов и, по-видимому, получаются некоторые разновидности легкодисперги-руемых материалов. [c.775]

    Эти формулы относятся только к магнитным частицам. Дискриминация электрического аналога в этих и других формулах будет проводиться и в дальнейшем. Для этого есть ряд веских причин. Первая состоит в том, что имеющаяся во многих случаях идентичность магнитных и электрических эффектов делает излишним дублирование формул. Раз-тичие заключается в вычислении энергии и момента сил, которое иллюстрировано приведенными выше формулами, в частности формулами (3.11.9) и (3.11.10). Вторая причина — различие в досту пности для экспериментирования ориентационного структурирования в электрическом и магнитном полях. Структурирование электрическим полем достигается только в специальных случаях, а возможность измерения электрической поляризации также сопряжено с рядом трудностей. Измерение статической электрической поляризации и вовсе неосуществимо. Магнитное поле в этих отношениях является предпочтительным. Единственное, о чем необходимо позаботиться, — это подбор дисперсной фазы. Она должна быть магнитной. Никаких других ограничений, в том числе отностельно природы среды, не существует. Это может быть диэлектрическая жидкость или раствор электролита высокой концентрации, это может быть даже расплавленный металл, что, кстати, позволяет достичь температуры Кюри магнитного материала и поставить сравнительный эксперимент с одной и той же системой при магнитном и немагнитном состояниях дисперсной фазы. Все эффекты магнитной поляризации и структурирования могут быть реализованы и исследованы экспериментально, тогда как с электрической поляризацией это вряд ли возможно. Наконец, третья причина, по которой далее будет отдаваться предпочтение ферромагнитным системам, — отсутствие трудностей с вычислением и с измерением величины магнитного дипольного момента частиц в случае однодоменных частиц шш в состоянии насыщения многодоменных частиц их магнитный момент легко вычисляется по формуле [c.683]

    Липосомы. Другой модельной системой, хорошо воспроизводящей многие свойства биологических мембран, являются липосомы. На возможность использования липосом а качестве моделей биологических мембран впервые обратил внимание А. Вэнгхем. В 1965 г. он показал, что фосфолипиды при набухании а аоде самопроизвольно образуют пузырькообразные частицы, которые состоят из множества замкнутых липидных бислоев, разделенных водными промежутками. Использование липосом в качестве модельных систем оказалось исключительно плодотворным и позволило выяснить целый ряд вопросов, касающихся молекулярной организации и функционирования биологических мембран. [c.575]

    О(арактерной особенностью коллоидно-дисперсных систем является большая удельная поверхность частиц, достигающая для высокодисперсных тел многих сотен или даже тысяч метров квадратных на грамм. Это придает дисперсным системам особые свойства, которые проявляются прежде всего в поверхностных явлениях, происходящих на границе раздела фаз в межфазных поверхностных слоях. Связано это с тем, что в таких системах значительная доля атомов или молекул, из которых состоит данное тело, локализована на поверхности раздела фаз. Эти молекулы или атомы находятся в несимметричном силовом поле и обусловливают появление избыточной свободной энергии системы, что и яв- [c.5]

    Гл. 1 этой книги можно в известной мере рассматривать как своеобразное подведение итогов целого периода экспериментальных исследований распада небольших молекул в ударных волнах. Первая задача этого периода заключалась в том, чтобы подавить всевозможные вторичные процессы и в наиболее чистых условиях получить константу скорости мономолекулярного распада ка. Вторая задача состояла в том, чтобы на основании измеренной зависимости от плотности и температуры получить сведения о механизме активации исходных молекул. Поскольку в настоящее время нет достаточно развитой теории обмена энергией при столкновениях возбужденных многоатомных молекул, механизм активации обычно моделируется путем задания функции распределения для переданной энергии. Здесь детально рассмотрены два предельных механизма механизм сильных столкновений и механизм ступенчатого возбуждения. Известно довольно много приближенных теорий, основанных на модели сильных столкновений. Наиболее распространенной среди них является теория Райса — Рамспергера — Касселя — Маркуса (РРКМ). В настоящее время значительный интерес представляет исследование различных отклонений от теории РРКМ, связанных главным образом с тем, что константу скорости превращения активных молекул нельзя считать зависящей только от полной энергии молекулы, а необходимо учитывать динамику внутримолекулярного перераспределения энергии. В книге эти вопросы освещены явно недостаточно, и, чтобы восполнить этот пробел, читателю можно рекомендовать монографию Никитина [2], а также работы Банкера (например, [3]). Другое весьма общее ограничение направления, использующего предположение о сильных столкновениях, отмечено в работах Кузнецова [4] и связано с тем, что с повышением температуры все больше нарушается равновесное распределение по внутренним степеням свободы частиц в процессе их диссоциации. Тем не менее имеются случаи, когда даже при сильном отклонении от равновесия возможно описание кинетики реакции на основе представления о равновесной константе скорости. Если среди распадающихся молекул происходит быстрый обмен колебательными квантами, то неравновесность выражается лишь в том, что система характеризуется не одной, а двумя или несколькими колебательными температурами. При температурах ниже некоторой критической температуры То константа скорости мономолекулярного распада определяется кинетикой переходов на верхние колебательные уровни, где обмен колебательными квантами не играет существенной роли, и только для таких температур константа скорости может быть вычислена [c.6]

    Интенсивности пиков, соответствующих массам ионов исходных молекул, дают возможность определять относительные концентрации атомов. Если рекомбинация атомов между реакционной трубкой и ионным источником пренебрежимо мала, то этим путем можно непосредственно определять абсолютные концентрации атомов. Как правило, на практике такое условие выполнить невозможно, если только нет способа предохранить молекулы газовой пробы от соударений друг с другом. Такие бес-столкновительные системы отбора проб использовались в экспериментах они состоят из серий газоотборных сопел, разделенных быстро откачиваемыми секциями, с помощью которых молекулярный пучок можно направить в источник ионов масс-анализатора. Увеличению интенсивности пучка в значительной степени способствует образование фронта ударной волны после того, как газ, расширяясь после первого газоотборного сопла, приобретает сверхзвуковую скорость. Это заметно коллимирует пучок. Второе сепарирующее сопло выделяет центральную часть этого пучка и направляет его в источник ионов [77]. К сожалению, конструктивные требования по объединению системы сверхзвуковых атомарных и молекулярных пучков с источником этих частиц, находящимся под низким давлением, таким, как струевая разрядная установка, трудновыполнимы. Поэтому во многих практически работающих установках используется обычная газоотборная система с эффузионным молекулярным пучком, в которой диаметр первого сопла не слишком велик по сравнению с длиной среднего пробега молекул. Фонер [70] показал, что можно добиться значительного увеличения чувствительности (отношения сигнал/шум), если такой пучок прерывается колеблющимся язычком, а ионный ток регистрируется с помощью фазочувствительного усилителя, соединенного с механическим модулятором. Система такого типа применялась для исследований радикалов НОг [78]. [c.320]

    Унрош,ения в описании хроматографического процесса, рассмотренные в предыдуш,ем параграфе, связаны с различными моделями его гидро(аэро)динамики. Многие конкретные разновидности хроматографии допускают также унрош,епия и в описании кинетики процесса. При этом обмен молекулами анализируемого веш,ества между фазами хроматографической системы -удобно рассматривать как гетерогенный процесс, понимая под гетерогенными превраш,ения, происходящие на границах раздела фаз. Гетерогенные процессы состоят из нескольких стадий. Первой из них является стадия переноса частиц, участвующих в процессе, к месту гетерогенного превращения. В хроматографии — это перенос молекул исследуемого вещества к границе раздела фаз в результате молекулярной диффузии и совокупности ряда гидро-(аэро)динамических факторов. На второй стадии процесса происходит собственно гетерогенная реакция. В хроматографии — это сорбция-десорбция элюируемых молекул. Третья стадия заключается в отводе прореагировавших частиц от места реакции. В хроматографии — это отвод сорбированных или десорбированных молекул от границы раздела фаз. Суммарная скорость гетерогенного процесса контролируется скоростью наиболее медленной стадии. В том случае, когда медленной стадией является подача или отвод реагентов, говорят, что реакция характеризуется диффузионной кинетикой. Если наиболее медленной является стадия химического или физического превращения, то она и определяет скорость реакции. А когда скорость переноса реагентов и происходящих с ними превращений сравнимы между собой, говорят о гетерогенных реакциях смешанного типа. Большинство хроматографических процессов, в которых суть гетерогенного превращения состоит в переходе элюируемых молекул из подвижной фазы в неподвиншую и обратно, характеризуются диффузионной кинетикой. В адсорбционной хроматографии этот переход сопровождается энергетическим взаимодействием с поверхностью сорбента. [c.18]


Смотреть страницы где упоминается термин Системы, состоящие из многих частиц: [c.325]    [c.13]    [c.66]   
Смотреть главы в:

Теория молекулярных орбиталей в органической химии -> Системы, состоящие из многих частиц




ПОИСК





Смотрите так же термины и статьи:

Система многих частиц



© 2025 chem21.info Реклама на сайте