Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись бутена пропилена

    Аммиак ацетилен ацетон бензин Калоша бензол бутан бутилен бутиловый спирт водород дивинил дихлорэтан диэтиловый эфир изобутан изобутилен изопентан изопрен метан метанол моновинилацетилен окись углерода пентан пропан пропилен стирол толуол хлористый аллил хлористый бутил хлористый винил хлористый метил хлористый этил этан этилен этиловый спирт. [c.192]


    В первой фракции определяют водород, окись углерода, кислород, азот и метан во второй фракции — этилен и этан в третьей — пропилен и пропан и в четвертой — н-бутилены, изо-бутилены, дивинил и н-бутаны. [c.169]

    Относительные скорости гидрокарбонилирования различных олефинов снижаются в последовательности пропилен > бутилены > гептен-1 > гептен-2. Давление не оказывает существенного влияния ни на скорость реакции, ни на выходы индивидуальных изомеров. Скорость реакции в весьма сильной степени зависит от отношения водород окись углерода в синтез-газе. Скорость реакции гидрокарбонилирования бутена-1 нри изменении состава синтез-газа (отношение Нг СО) с 1 1 до 3,5 1 увеличилась более чем в 10 раз, но относительный выход спирта нормального строения при этом не изменился. Аналогичные результаты были получены для гептена-1. [c.265]

    Пропилен, точнее его тетрамер, является главным алифатическим продуктом, используемым для получения синтетических моющих средств, и это положение, ио-видимому, не изменится до тех пор, пока получаемые из него моющие средства будут пользоваться спросом среди населения и местных властей, ведающих коммунальным хозяйством. Окись этилена применяется для получения неионных моющих средств, производство которых быстро растет. Около 40% всего потребляемого этилового спирта (см. табл. 1) денатурируется метиловым спиртом и используется в различных целях без таможенного контроля, остальные 60 - используются в нефтехимической промышленности для производства уксусного альдегида, сложных эфиров и подобных продуктов. Уксусный альдегид служит промежуточным продуктом в производстве уксусной кислоты, уксусного ангидрида, к-бути-лового и октилового спиртов. [c.73]

    Термическое разложение моно-2-этилгексилового эфира полипропиленгликоля в присутствии перекиси трет, бутила было исследовано Томасом [389]. При нагревании полимера при 338° в атмосфере азота, свободного от кислорода, образуются ацетальдегид, формальдегид, пропионовый альдегид, пропилен, окись углерода, ацетон и остаточное масло мол. в. — 700, которое содержит карбоксильные и гидроксильные группы и ненасыщен- [c.69]

    Цеолит марки ЫаА, адсорбирует молекулы с критическими размерами меньше 4А. К таким веществам относятся вода, углекислый газ, сероводород, аммиак, этан, этилен, пропилен, низшие ацетиленовые углеводороды нормального строения. При более низких температурах в существенных количествах адсорбируются инертные газы (неон, аргон, криптон и ксенон), кислород азот, окись углерода и метан. Цеолит КаА не адсорбирует высшие нормальные парафины, начиная с пропана, парафины ызо-строения и бутены-2, высшие спирты и все соединения циклического строения. [c.428]


    Если не удлинять время воздействия светом, то образующийся одновременно ацетон не подвергается разложению и может быть выделен в таких же количествах, как и пропилен. Небольшие количества этана, окиси углерода и т. п., обнаруживаемые в продуктах фотолиза, могут происходить в результате разложения ацетона или побочного расщепления метилбутилкетона на радикалы метил и бутил и на окись углерода. [c.264]

    При окислении пропилена воздухом были получены только формальдегид, уксусный альдегид и муравьиная кислота [1]. Однако исследователи, применявшие пропилен в избытке при 215—280° С и 12—18 атм, получили наряду со смесью кислот и альдегидов также окись пропилена, пропиленгликоль и глицерин 12]. Было установлено, что в первых стадиях окисления образуются аллиловый спирт и пропионовый альдегид. Аллиловый спирт и глицерин образуются, очевидно, в результате реакции, при которой молекулярный кислород действует на метильную группу. Исследовано окисление 2-бутена кислородом при 350—500° С [3]. Основными продуктами реакции являлись уксусный альдегид и бутадиен. Установлено также присутствие глиоксаля, окиси олефина, органической кислоты и перекисей метилэтилкетон не был обнаружен. Бутадиен, повидимому, получался в результате дегидратации 2,3-бутандиола или окиси бутилена окисление бутадиена по двойным [c.142]

    Этан. , Этилен Ацетилен Пропан Пропилен Аллен. . н-Бутан ) изо-Бутан / Бутены. Бутадиен . . Винилацетилен Диацетилен. Циклопентадиен Бензол. . . Толуол. . . Водород. . . Окись углерода Азот. ... [c.69]

    При низких давлениях реакция обратима (см. раздел 26, в), поскольку при нагревании в присутствии перекиси ди-треш-бутила р-этилтноизобутираль-дегид разлагается на окись углерода, пропилен н этилмеркаптан. Те же авторы описали также ряд других трохкомионентных теломеров, образованных из олефинов, окиси углерода и таких реагентов, как СС14, кетоны, спирты и т. д. [c.252]

    Бензин Б-95/130, бутан, бутилацетат, бутилпро-пионат, дивинил, диметиламин, диоксан, 4,4-диметилдиоксан, изопентан, метилакрилат, метиламин, метилфуран, метилизобутилкетон, нитрил акриловой кислоты, нит )оциклогексан, окись мезитила, пентан, пропилен, 1,3-пентадиен, окись 2-метил-2-бутена спирты бутиловый, метиловый, этиловый фуран, эпихлоргидрин, этилацетат [c.552]

    Пропилен (I), mpem-бутилгидро-перекись (II) Окись пропилена Нафтенат молибдена (2% Мо) в треот-бутано-ле, 28—42 бар, 80 С, 2 ч, I II = 2 1. Конверсия 1—86% [790] [c.533]

    Особое внимание нужно обратить на катализатор окись кобальта на угле , способный димеризовать этилен, пропилен, бутены и гексены [154]. Например, аммонированный уголь, пропитанный HHtpaTOM кобальта с последующей активацией нагреванием до 300 °С в токе азота, катализирует димеризацию пропилена с селективностью, превышающей 99%, до смеси -гексенов и 2-метилпентенов в соотношении 1 1 при температурах 25—85 С. [c.226]

    Из соединений элементов этой подгруппы (В, А1, Ga, In, TI) определенной дегидрирующей активностью обладает окись алюминия, причем наиболее употребительны и активны в этом отношении a-AljOg и - --AlaOs. В процессах дегидрирования окись алюминия используется главным образом в составе бинарных и более сложных катализаторов. В более ранних работах исследовалась возможность применения активированной окиси алюминия в качестве самостоятельного катализатора дегидрирования низших парафинов пропана в пропилен [77, 78], бутана в бутилен [78, 79]. Однако в дальнейшем было показано, что окись алюминия, так же как и индивидуальные окислы других металлов (Мо, Сг, Ti, Zn, Мп и др.), имеет малую избирательность, вызывая, например, при дегидрировании бутана, наряду с образованием целевого продукта — бутилена — значительный распад молекул углеводорода. Аналогичным образом проявляет себя и ряд катализаторов из указанных окислов, нанесенных на уголь, кремнезем или окись магния [1]. [c.159]

    Известны также сополимеры этилена с пропиленом, а-бутиленом, а-ок-тиленом, полученные по радикальному механизму, в присутствии перекиси трет.бутила и ацетоноксима при 130—220° С и давлениях 1050—1750 атм [58]. Описаны сополимеры этилена с тетрафторэтиленом [59]. [c.183]

    Применение газовой хроматографии позволило изучить механизм побочных реакций разложения перекиси трет-бушла, объяснить появление в реакционной среде таких продуктов, как m le 7г-бyтилoвый эфир и окись изобутилена, а в газообразной фазе—этан и этилен, пропан и пропилен, изобутан. Подробное изучение продуктов газо-хроматографическим методом дало возможность количественно оценить все направления расхода перекиси трет-бутила. Применение хроматографического метода позволило также выяснить ряд кинетических закономерностей [c.104]

    На универсальном приборе можно определять в смеси водород, окись углерода, редкие газы, метан, этан, этилен, пропан, пропилен, нзобутан, бутан, изобутилен, бутилен, те/)акс-бутилеп-2, цис-бути-леп-2, дивинил, изопентан, пентан, пептепьт, гексаны, гептаны, октаны. [c.308]

    Вода, метан, окись и двуокись углерода, этан, этилен Бутадиен, бутены, цик-лоиентадвены, гексадиены, пропилен, циклогексадиены Изобутилен, димер, тример и тетрамер [c.239]


    Высокие значе,ния оптимальных доз не позволяют реализовать непрерывные процессы вулканизации по этой же причине происходит повышение стоимости радиационно-вулканизованных изделий. Поэтому в резиновые смеси при проведении радиационной вулканизации следует вводить сенсибилизагоры, способные снизить оптимальные дозы до 3—5 Мрад. В качестве сенсибилизаторов предложены соединения самых различных классов, например моно- и дималеимиды [68] гексахлорэтан [69] кумаро-но-инденовые смолы [70] акрилаты, диакрилаты, диметакрилаты полиэтиленгликоля и диакрилаты и диметакрилаты пропилен- и тетраметиленгликоля [71] органические перекиси диизопропила, ди-грет-бутила, дибензоила, дикумила, грег-бутила, гидроперекись кумола [72] окись азота [73] соединения лития, меркаптаны [74]. Применение большей части из перечисленных веществ в промышленности нецелесообразно, поскольку стоимость многих из них значительно превышает стоимость самого излучения. Кроме того, многие соединения токсичны или летучи. [c.215]

    Гидратация этилена на фосфорнокислотных катализаторах является основным и наиболее экономичным методом получения этилового спирта. Ценным продуктом является окись этилена, образующаяся нри окислении этилена на серебряных катализаторах. Каталитич. методы позволяют использовать пропилен для получения изопропилового спирта, ацетона, акролеина, нитрила акриловой к-ты, продуктов алкилирования. Путем дегидрирования на окиснохромовых катализаторах бутана, бутиленов, изопентапа производятся в больших масштабах основные мономеры для производства сиитетич. каучука — дивинил и изопрен. Упомянутые уже выше реакции каталитич. ароматизации используются для производства из нефти бензола, толуола и других ароматических углеводородов. [c.231]

    При применении в качестве эпоксидирующего агента трет-бу-тилгидроперекиси исходным сырьем являются пропилен и изобутан, а конечными продуктами — окись пропилена и трет-бутил-карбинол или 2-метилпропен. С гидроперекисью этилбензола получаются окись пропилена и стирол. Процесс окисления пропилена гидроперекисью этилбензола в присутствии катализаторов с целью получения окиси пропилена и стирола запатентован фирмой Hal on (США). [c.292]

    Используя описанные выше методы, мы выделили и идентифицировали некоторые продукты низкотемпературного окисления пропилена, пропана, бутана и пентана. Окисление во всех случаях производилось статическим методом в стеклянном реакционном сосуде. Исследование окисления производилось как в области холодного пламени (бутан и пентан), так и в области медленного окисления (пропилен и пропан). Во всех случаях в продуктах реакции содержа.лись окись углерода и сравнительно небольшое количество СОг- Альдегиды мы выделяли либо в виде димедоновых призводных, либо в виде 2,4-динитрофенилгидразонов. Спирты выделялись в виде 3,5-дииитробензоатов. Разделение производных альдегидов и спиртов производилось, как описано выше. [c.190]

    Изучение влияния добавки к газу синтеза газоля (углеводородов С3+С4, получаемых в процессе синтеза), чистого пропилена и бутилена было проведено Е. Рушенбургом в Дрезденской высшей технической школе [21]. Опыты были произведены в лабораторных реакторах, содержавших около 40 г кобальтового катализатора фирмы Рурхеми . Добавлявшийся к газу синтеза газоль содержал (объемные %) 11,9 пропилена, 23,0 бутилена, 37,1 пропана, 21,5 бутана и 6,5 примесей (азот, этилен, этан, окись углерода и двуокись углерода). В табл. 132 приведены результаты, показывающие изменение Степени превращения олефинов в зависимости от парциального давления олефинов в газе. Опыты 1—5 и 10—12 проведены с катализатором, уже работавшим в течение 300—500 час. при 187—191°. Повидимому, эти результаты сравнимы в пределах воспроизводимости опытов. Результаты этих опытов показывают, что степень превращения олефинов газоля не зависит от объемной скорости газа и приблизительно обратно пропорциональна квадратному корню из концентрации олефинов. Сравнение результатов опытов с чистым пропиленом (опыты 13—18) с результатами опытов с газолем (опыты 5 и 10— 12) и с чистым бутиленом (опыты 19 и 20) показывает, что для пропилена степень превращения в тех же условиях была в 5—10 раз меньше. [c.280]


Смотреть страницы где упоминается термин Окись бутена пропилена: [c.731]    [c.413]    [c.27]    [c.32]    [c.718]    [c.166]    [c.168]    [c.33]    [c.196]    [c.279]    [c.23]    [c.270]    [c.227]   
Химическая переработка нефти (1952) -- [ c.142 , c.175 , c.288 , c.361 , c.362 ]




ПОИСК





Смотрите так же термины и статьи:

Пропилен окись



© 2025 chem21.info Реклама на сайте