Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Измерение адсорбированного количества

    Вычислите количество водорода (измеренного при стандартных условиях), которое адсорбируется 100 мл адсорбента, если его площадь поверхности 850 м, причем 95% поверхности является активной. Диаметр молекулы водорода 27 нм. Адсорбированное молекулы касаются друг друга в плоскости так, что центры четырех соседних сфер расположены в углах квадрата. [c.342]


    В отличие от хемисорбции физическая адсорбция основана главным образом на вандервааль-совом взаимодействии между поверхностью твердого вещества и ее окружением. Поэтому теплота адсорбции нередко составляет всего 10 ккал на моль адсорбированного вещества, и вследствие этого адсорбированный слой легко отделяется от поверхности. Одним из полезных применений физической адсорбции является измерение площади поверхности мелкоразмолотых порошков. Для этого измеряют количество газа, необходимое для образования мономолекулярного слоя на твердой поверхности, и, если известна площадь поперечного сечения адсорбированных молекул, на основании этих данных можно установить площадь поверхности твердого вещества. Например, адсорбируемая на твердой поверхности молекула азота обычно занимает площадь 16,2 А . Если 55 мл N2 (при нормальных условиях) адсорбируются в виде мономолекулярного слоя на 1 г древесного угля, то нетрудно подсчитать, что удельная поверхность [c.497]

    Из способов измерения поверхности катализаторов, основанных на адсорбции газов пли паров, наибольшей точностью обладают статические (объемные и весовые) методы, предложенные Брунауэром, Эмметом и Телле-р 0м31, 62, бз в обоих случаях снимают изотермы адсорбции, с помощью которых проводят соответствующие вычисления поверхности. Изотерму снимают в условиях глубокого вакуума. Количество адсорбирующегося газа измеряют по уменьшению объема адсорбата (объемный метод) или по привесу образца (весовой метод). Температуру в течение опыта выдерживают постоянной. [c.72]

    Диаметр молекулы водорода составляет около 2,7 А. Какое количество водорода (измеренное при стандартных условиях) может быть адсорбировано на 100 мл адсорбента, если его поверхность равна 850 м /см , причем активны 95% поверхности Можно принять, что адсорбированные молекулы касаются друг друга в плоскости и расположены так, что центры четырех соседних сфер находятся в углах квадрата. [c.255]

    Итак, уголь при низких температурах адсорбирует кислород физически, и процесс этот сходен с ожижением газа, тогда как при высоких температурах имеет место химическое взаимодействие. Хорошо известно, что ожижение газа происходит практически мгновенно (если оно имеет место в условиях не очень низких давлений и если теплота конденсации mohi t достаточно быстро рассеиваться). Эта высокая скорость характерна для данного явления почти вне зависимости от температуры. Не удивительно, что таким же свойством отличается и физическая адсорбция. В отличие от физической адсорбции, скорость химических реакций в высокой степени зависит от температуры, падая при очень низких температурах до величин, не поддающихся измерению. Если графически выразить зависимость от температуры количества водорода, адсорбированного окисью цинка, то получится кривая, изображенная на рис. 5. В сравнительно узком температурном интервале имеет место значительное повышение адсорбции. Что ниже этой температуры адсорбция имеет физический характер, видно из того, что адсорбированный газ может быть удален эвакуированием. Заключение это подкрепляется и низкой величиной теплоты адсорбции, приблизительно в 1900 кал на моль при 0°С. С другой стороны, водород, адсорбированный при высокой температуре, может быть удален только в виде воды, и его теплота адсорбции равна 20 ООО кал (между 300 и 444° С). Наконец, скорость адсорбции при высоких температурах изменяется с температурой очень сильно, проявляя в этом отношении свойства химической реакции. В области температур между 250—450° К, где общая величина адсорбции растет (см. кривую рис. 5), скорость адсорбции изменяется мало. Напротив, при низких температурах скорость [c.89]


    Необходимо отметить, что процесс, обратный первой стадии (адсорбции углеводорода) приводит к изомеризации (миграции двойной связи), что и наблюдали на опыте, а скорость восстановления катализатора, измеренная в отсутствие кислорода, достаточна для объяснения скорости окислительной дегидрогенизации [81]. Но эти модели не дают ключа к решению вопроса о происхождении различий в селективности у разных окислов, т. е. эти модели не раскрывают причин, заставляющих окислы отдавать предпочтение одному из возможных реакционных путей (через альдегид или диен). Начальный выход первичных продуктов окисления никогда не равен 100%, и всегда присутствует какое-то количество продуктов деструкции. Этот новый тип селективности связан с легкостью десорбции первичных продуктов, которые очень часто адсорбируются сильнее, чем олефин, как показывает их влияние на кинетику реакции. В экстремальных случаях не десорбируется ни одно из промежуточных соединений между олефином и СО или СОг, и единственной реакцией, которую удается наблюдать, является полное сгорание, и притом не только на неселективных катализаторах, но и на селективных, таких, как В1— —Мо—О (например, циклопентен) [83]. По той же причине при работе со всеми этими катализаторами следует избегать микропористости, поскольку из-за медленной диффузии в порах удлиняется время контакта, что приводит к глубокому разрушению желательных продуктов. [c.165]

    В дальнейшем объемы газа, адсорбирующегося при втором и всех последующих впусках, вычисляют с учетом остаточного равновесного давления после каждого предыдущего измерения. Общее количество адсорбирован- [c.76]

    Так, например, 209 покровных стекол давали поверхность в 3000 см , на которой можно было адсорбировать количество г аза, поддающееся измерению с достаточной точностью. Принимая расстояние между атомами на поверхности равным [c.141]

    При проведении адсорбционных измерений определенное количество газа впускают через кран 7 в часть системы, изолированную затвором 3, при этом насос Г находится в холодном состоянии. Определяется уменьшение давления в колбе 2. Газ частично адсорбируется тонкой пленкой металла в 5 при постоянной температуре и давлении, измеряемом манометром 4. Количество адсорбированного при данном давлении газа определяют по разности между действительным давлением, которое измеряется манометром 4, и давлением, вычисленным в предположении. [c.348]

    Одинаковое количество СОг (40 см , измеренных при нормальных условиях) адсорбируется 1 г угля в одном опыте при 303 К и 799,8-102 Па, а в другом — при 273 К и 230,6-10 Па. Определите, под каким давлением (Па) адсорбируется это количество СОг при температуре 293 К. [c.81]

    В последнее время много внимания уделяется характеристике поверхности серебряных катализаторов и установлению соотношений между ней и кинетикой образования окиси этилена. Интересные результаты были получены при измерении скорости адсорбции кислорода. Было установлено, что время, необходимое для адсорбции лишь 20% от количества кислорода, которое адсорбируется при полном насыщении, очень мало (1 мин), тогда как адсорбция остальных 70% протекает значительно медленнее (8 мин, т. е. в 80 тыс. раз больше). / [c.165]

    В обоих указанных выше случаях два одновременно хемосорбированных газа не взаимодействовали друг с другом. Если же они способны взаи.модействовать между собой, то ожидаемые закономерности будут носить более сложный характер. Изучению этих закономерностей путем прямых хемосорбционных измерений посвящено сравнительно небольшое число работ. Бик [60] изучал одновременную хемосорбцию азота и водорода на пленках железа. Как отмечалось в разделе IX, 12, энергия активации адсорбции азота после покрытия им 20 всей поверхности становится слишком высокой для того, чтобы при комнатной температуре могла протекать дальнейшая хемосорбция. Бик установил, что если водород адсорбируется первым и степень заполнения поверхности им равна Йн, то поверхность сможет адсорбировать меньшее количество азота, а именно  [c.161]

    За это время к поверхности электрода смогут подойти и разрядиться (или адсорбироваться) примеси, содержаш,иеся даже в ничтожных количествах в растворе. Таким образом, обычно закономерности стадии разряда — ионизации исследуют в доступном для экспериментальной техники интервале потенциалов, а затем экстраполируют на области, где такие измерения оказываются невозможными. [c.240]

    Метод радиоактивных индикаторов применим к электродам с развитыми поверхностями. В противном случае радиоактивный фон оказывается значительно выше, чем радиоактивность адсорбированных ионов. По этой же причине измерения с радиоактивными индикаторами даже на электродах с развитыми поверхностями возможны с достаточной точностью лишь в относительно разбавленных растворах (до 0,01 н.). Однако для сильно адсорбирующихся ионов можно использовать этот метод и на гладких электродах, при этом одновременно необходимо свести к минимуму количество радиоактивного [c.34]

    В динамических методах смесь изучаемого и мало адсорбирующегося газа (например, гелия) пропускается через слой адсорбента. После достижения равновесия количество поглощенного газа определяется либо взвешиванием адсорбента, либо измерением количества адсорбированного газа после удаления его из адсорбента. Измерение адсорбции газа приводит к так называемому термическому уравнению адсорбции — зависимости адсорбированного количества Г от температуры Т и концентрации (или давления) газа Г = I С, Т). [c.295]


    При измерениях pH растворов очень удобен стеклянный электрод (рис. 78), представляющий собой шарик 1 из тончайшего электропроводящего стекла. При погружении шарика в водный раствор на стекле адсорбируются ионы Н+ и ОН- в количествах, зависящих от среды раствора. Это приводит к возникновению на наружной поверхности стекла потенциала, связанного с концентрацией ионов Н+ и ОН (имеются многочисленные теории стеклянного электрода). [c.211]

    Вычислить количество водорода (измеренного при стандартных условиях), которое адсорбируется 100 мл адсорбента, если [c.356]

    Метод основан на свойстве растворенных поверхностно-активных макромолекул полистирола адсорбироваться на поверхности ртутной капли и уменьшать величину полярографического максимума кислорода. Полярографический максимум получают на фоне 0,1 н. раствора К1 в бинарном растворителе бензол—метанол (1 3). В смеси бензол—метанол растворяется только ограниченное число молекул полистирола определенной молекулярной массы, остальная часть полимера выпадает в осадок. Растворенный полимер, адсорбируясь на поверхности ртути капельного электрода, уменьшает полярографический максимум. Согласно методике в электролитическую ячейку при измерениях вводят одинаковое количество полимера, поэтому при переходе от образцов с большей молекулярной массой к образцам с меньшей молекулярной массой в осадок выпадает все меньшая часть полимера. При этом концентрация полимера в растворе увеличивается, и степень подавления максимума возрастает. [c.238]

    Для изучения физико-химических характеристик водных сред разработана методика определения адсорбции из водных растворов [88, 89], позволяющая измерять величину адсорбции на сплошной поверхности металла. Методика состоит в следующем. Поверхность стали вводится в соприкосновение с водным раствором ПАВ известной концентрации и выдерживается при постоянной температуре до наступления равновесной адсорбции. Затем определяется концентрация ПАВ в объеме жидкости после адсорбции и рассчитывается количество адсорбировавшегося вещества на единице поверхности металла. Разница концентраций раствора до и после адсорбции определяется по оптической плотности раствора в ультрафиолетовой области спектра при помощи кварцевого спектрофотометра СФ-4. Величина этой разницы, достаточная для измерения адсорбции с относительной ошибкой не более 10—15%, обеспечивается выбором формы и размеров металлического сосуда, стенки которого являются адсорбирующей поверхностью. На рис. 8 [c.26]

    Кроме адсорбции криптона, на двух образцах полистирола и двух образцах полифенилсилоксана (приготовленных из 4- и 10%-ных растворов) была дополнительно исследована адсорбция паров воды и н-гексана. Измерения проводились при 25° в вакуумной адсорбционной установке с пружинным и весами. Несмотря на высокую 5уд аэрогелей, вода практически ими не адсорбировалась (образцы не поглощали воду в заметных на пружинных весах количествах даже при давлениях пара, близких к давлению насыщенного пара воды). н-Гексан, напротив, сорбировался весьма интенсивно, что видно из рис. 4 и 5. В отличие от полностью обратимой низкотемпературной адсорбции криптона, адсорбция н-гексана, особенно на полистироле, характеризуется необратимостью (рис. 5). Необратимость сорбции гексана связана, вероятно, с тем, что при комнатной температуре он не только адсорбируется на поверхности скелета аэрогелей, но и проникает внутрь него и прочно удерживается в пространстве между макромолекулами полимера. В случае полифенилсилоксана, обладающего более жестким скелетом, адсорбционное равновесие устанавливалось быстро, за 2—3 часа, а скорость объемной сорбции была мала даже при высоких величинах относительного давления пара гексана. В случае же полистирола, обладающего более эластичным скелетом, чем полифенилсилоксан, объемная сорбция гексана протекала с заметной скоростью уже при малых Р/р и сорбционное равновесие не устанавливалось даже за 14—15 часов. Из полученных данных можно сделать вывод о преобладающей роли объемной сорбции гексана аэрогелем полистирола, в то время как при сорбции гексана полифенилсилоксаном в основном имеет место лишь адсорбция на поверхности скелета аэрогеля. Подобные исследования могут служить тонким методом для определения взаимодействия между аэрогелем и парами адсорбируемого вещества. [c.618]

    Адсорбционные измерения на брюстерите, дегидратированном в вакууме при 250 °С, показали, что на нем адсорбируется только вода (диаметр молекул 2,6 А). Количество адсорбируемой воды не эквивалентно тому количеству, которое удаляется из образца при дегидратации (12 и 15% соответственно). [c.141]

    Как правило, после разделения вещества прочно адсорбированы силикагелем и их можно экстрагировать только достаточно большими количествами растворителей. В очень редких случаях вещество удается извлечь полностью. Кроме того, при элюировании в раствор всегда попадает какая-то часть силикагеля, что вызывает рассеяние света при проведении измерений. На фотоумножитель детектирующей системы попадает меньшее количество света, что приводит к кажущемуся возрастанию поглощения. Уменьшив влияние фона, можно частично устранить два указанных выше источника ошибок. Для этого одновременно измеряют поглощение исследуемого и стандартного растворов в аналогичных условиях для одной и той же ТСХ-системы, [c.175]

    Замена протонов на ионы щелочных металлов снижает активность алюмосиликатов (рис. 7.3)-. Выход бензина при каталитическом крекинге стандартного сырья в заданных условиях растет с повышением кислотности алюмосиликатных катализаторов, измеренной по количеству хе осорбированного хинолина, адсорбирующегося на кислотных центрах и Бренстеда и Льюиса (рис. 7.4). [c.211]

    Сушествуют также методы измерения удельной поверхности катализаторов, основанные на адсорбции из жидкой фазы, например, чистого вещества или двухком-понентиого раствора. В случае применения в качестве адсорбата индивидуальной жидкости удельную поверхность вычисляют по количеству выделяющейся теплоты смачивания, а в случае адсорбции компонентов растворов— ио уменьшению концентрации наиболее сильно адсорбирующегося компонента. [c.86]

    Импульсные реакторы. Трубчатые реакторы еще меньших размеров, непосредственно связанные с газовыми хроматографами, используют как импульсные реакторы. Их ценность сильно снижается тем, что они работают в переходном режиме, поскольку катализатор никогда не достигает стационарного состояния по компонентам потока из-за адсорбционно-десорбцпонных эффектов. Результаты. импульсных испытаний катализаторов очень неопределенны, а их трактовка трудна. Значение таких испытаний ограничивается отсеиванием совершенно инертных или малоактивных катализаторов от активных, но количественных оценок активности или селективности они не дают. Импульсные реакторы можно использовать для иолуколичественных исследований при повторениях импульсов с целью определения характера адсорбирующихся частиц и измерения количества ядов, поглощенных катализатором. [c.66]

    Газ, отобранный из пиролизера, проходит через медный сосуд, заполняемый вначале известным количеством воды и погруженный в бак с циркулирующей холодной водой. В воде, которая находится в сосуде, газ барботирует и оставляет в ней большую часть содержащейся в нем смолы и влаги. Затем газ проходит через два стеклянных холодильника (охлаждение производится посредством внешней циркуляции воды), а потом через два электрофильтра тоже стеклянных, в которых он полностью освобождается от увлеченных им пузырьков. Температура газа, измеряемая на входе и выходе электрофильтров, почти постоянная и приблизительно равна 25 С. Этот газ насыщен парами воды и имеет тот же химический состав, что и газ, измеренный в счетчике основной схемы. После этого газ проходит через две колбы со щелочным раствором феррицианида, где он оставляет весь содержащийся в нем НаЗ, а затем проходит через две сушильные колонны, содержащие СаС1.2 (предварительно обработанный в СО а), перед поступлением в два цилиндра, заполненных активированным углем, в которых при комнатной температуре адсорбируются все жидкие углеводороды (а также нафталин и некоторые газообразные углеводороды, которые по массе составляют 1,5% от массы адсорбированных продуктов). [c.496]

    Могут использоваться и другие газы и пары, особенно в тех случаях, когда некоторые затруднения вызывает применение аппаратуры охлаждения для создания температуры жидкого воздуха. Так, Киселев и Каманин [67] для измерения удельной поверхности и пористых свойств адсорбентов использовали метанол при комнатной температуре. При относительном давлении р/ро = 0,1 удельная поверхность оказалась равной 145а м /г, где а — количество адсорбированного метанола, ммоль/г, или приблизительно 4 молекулы СНдОН на 1 нм2. Фуран при 23°С и бутан и изобутан при 0°С образовывали монослойные покрытия, для них были вычислены площадки, приходящиеся на одну молекулу в монослое 42, 54 и 53 А соответственно [68]. Аммиак при температуре кипения дает монослойные покрытия, изменяющиеся в зависимости от природы поверхности кремнезема [69]. Моноксид азота (N0) адсорбировался в температурном интервале 181—293 К, что определялось измерением магнитной восприимчивости [70]. При р/ро = 0,214 адсорбированный бензол образовывал монослой на поверхности кремнезема из этих данных можно было вычислить удельную поверхность адсорбента [71]. Исходя из основных положений, Киселев [72] провел вычисления изотерм адсорбции, измеренных на силикагелях, которые различались по величине удельной поверхности, размерами пор и степени гидроксилирования поверхности. [c.645]

    Метод радиоактивных индикаторов применим к электродам с ра шитыми поверхностями. В противном случае радиоактивный фон оказывается значительно выше, чем радиоактивность адсорбированных ионов. По этой же причине измерения с радиоактивными индикаторами даже на электродах с развитыми поверхностями возможны с достаточной точностью лищь для относительно разбавленных растворов (до 0,01 н.). Однако для сильно адсорбирующихся ионов можно использовать, этот метод и иа гладких электродах при этом одновременно необходимо свести к минимуму количество радиоактивного раствора, находящегося в контакте с электродом. Так, на гладкой платине методом радиоактивных индикаторов была изучена адсорбция ионов иода и брома. Измерения данным методом были [c.32]

    У d Нг 30 мв по отношению к обратимому водородному электроду в том же растворе, то при этом в соответствии с уравнением Нернста парциальное давление водорода составит уже около 10 атм. Так как растворимость водорода подчиняется закону Генри, то можно подсчитать, что концентрация растворенного водорода при 0,1 атм составит приблизительно 10 моль1л. Предположим, что для измерения кривой заряжения используется такой же электрод, как и при измерении адсорбционных кривых (см. 7) с истинной поверхностью 50 м . Адсорбция водорода на этом электроде может быть подсчитана, исходя из предположения, что на каждом поверхностном атоме платины при обратимом водородном потенциале адсорбируется один атом водорода. Так как на 1 м поверхности число атомов платины составляет 1,31-10 , то количество адсорбированного водорода составит 5-10 моль. Если электрод погружен в 1Ь мл раствора, то количество растворенного водорода при 0,1 атм составит 1,5-10" моль. Таким образом, количеством растворенного водорода практически можно пренебречь по сравнению с количеством адсорбированного водорода, т. е. на платинированном платиновом электроде легко создать условия, необходимые для снятия равновесных кривых заряжения. [c.68]

    Закачка водных растворов ПАВ в нефтяные пласты для увеличения нефтеотдачи ведется в СССР с 1967 г. При зтом бросается в глаза одна из особенностей этого процесса. В попутной, добываемой вместе с нефтью воде отмечаются лишь следы ПАВ. Это обычно объясняют адсорбцией ПАВ на породе, полагая, следовательно, что почти все введенное в пласт количество ПАВ адсорбируется породой. Приведенные результаты измерений диффузии показывают, что значительное количество ПАВ может поглощаться нефтью, которую стараются извлечь с помощью ПАВ. Нефть, поглотившая ПАВ, существенно меняет свои свойства, как это показано раньше в работах, выполненых в Уфимском нефтяном институте [3, 4], Следовательно, в некоторых случаях перешедшее в нефть ПАВ не может считаться бесполезно потерянным. [c.95]

    В работах [78, 79] было показано, что хорошим радиореагентом для определения некоторых стероидов путем замеш.ения их кетогруппы оказался семикарбазид- 5. Тиосемикарбазоны при этом образуются с хорошим выходом, а удельная радиоактивность реагента может быть достаточно большой и обеспечить тем самым высокую чувствительность анализа. Эти производные характеризуются заметным сродством к бумаге и силикагелю, и поэтому для их разделения методом бумажной или тонкослойной хроматографии требуются большие количества подвижной фазы (например, в анализе стероидов). Полярность тиосемикарбазонов уменьшается, при их ацетилировании, в результате чего образуются 2,4-диацетилпроиз-водные, что требует, однако, больших затрат вещества. Продукты ацетилирования меньше адсорбируются стеклом, и потому ацетилирование уменьшает потери, обусловленные этой адсорбцией. Если в анализируемую пробу биологической жидкости добавить определенное количество анализируемого стероида, меченного тритием, то по этому стероиду можно будет определить полный выход веществ в анализе и упростить его проведение. Желательно, чтобы добавляемый стероид имел настолько высокую удельную радиоактивность, что его можно было добавить в количестве, пренебрежимо малом по сравнению с количеством стероида в анализируемой пробе (см. гл. 1 и 2 об использовании второго радиоизотопа в качестве индикатора). Измерение радиоактивности пары с помощью жидкостного сцинтилляционного счетчика можно осуществить на тех же приборах, что и измерение радиоактивности для пары В работе [80] описана модификация этого метода для одновременного определения и 5 в условиях переменного тушения излучений. [c.113]

    При определении адсорбционных равновесий с жидкими адсорбатами необходимы косвенные методы измерения с тем, чтобы исключить проникновение неад-сорбированной жидкости в поры адсорбата. Один из таких методов предусматривает следующее жидкость и адсорбент помещают в раздельных открытых сосудах в замкнутый объем постепенно образующийся пар адсорбируется вплоть до достижения равновесия между жидкой фазой, паровой фазой и фазой адсорбата. Для достижения равновесия в таких условиях требуется, по разным оценкам, от четырех до шести недель. Практикуется также удаление окклюдированного материала центрифугированием. При использовании хроматографического метода, как, например, в работе [259], определенное количество жидкости известного состава приводится в равновесие с известным количеством твердого вещества, помещенного в колонку. После чего через колонку пропускают растворитель, следя за изменением определенных свойств вытекающего потока (элюата), и исходя из них определяют состав и количество адсорбата. [c.444]

    Измеряется при этом избыточное время удерживания в колонне интересующего нас адсорбата по сравнению со временем удерживания одновременно вошедшей в колонну порции газа-носителя или другого, введенного одновременно с изучаемым адсорбатом практически не адсорбирующегося газа. Таким образом, этот метод позволяет непосредственно определить избыточную, т. е. гиббсовскую [17, 18] величину адсорбции. Эту величину отражает произведение измеренного избыточного времени удерживания адсорбата и скорости потока газа, приведенной к постоянному давлению в колонне. Это произведение называют удерживаемым объемом Vи (подробнее см. разд. 3 этой гл.), его обычно относят или к единице массы адсорбента в колонне = Уц1т (т — масса всего адсорбента в колонне), или к единице его поверхности = Уц/А А — общая поверхность адсорбента в колонне). Вычисление изотерм адсорбции из зависимости Уд от величины пробы (количества адсорбата, впускаемого в ток газа-носителя у входа в колонну) описано в книгах [1, 24, 25]. При этом очень важно обеспечить постоянную температуру по всей длине колонны. [c.98]

    Так, поверхностное натяжение 0,05%-ного раствора лаурата калия повышается с 22 до 60 дин см от ничтожного количества щелочи. Подщела-чивание разрушает кислое мыло и образует хуже адсорбирующееся нейтральное мыло. Напротив, под-кисление растворов мыл снижает а вследствие усиления гидролиза и образования кислых мыл. Поэтому важно, например, при точных измерениях поверхностного натяжения растворов гидролизующихся ПАВ проводить эксперимент (приготовление образцов и сами измерения) в условиях полной изоляции от СО2 воздуха, которая, поглощаясь растворами, усиливает гидролиз мыла. [c.105]

    В данной работе проводилось исследование мостиков из указанных частиц при наличии некоторого количества влаги в эмульгированном и адсорбированном состоянии. Путем измерений емкостного и активного составляющих токов показано, что в мостике частицы находятся в плотном контакте. Эти частицы являются в основном продуктами окисления, они обладают способностью адсорбировать влагу. При наличии адсорбированной влаги мостик становится проводящим, ля описания такой системы можно применять эквивалентную параллельную РС-схему, Путем измерента показано что сопротивление этих мостиков зависит ох напрягенности электрического поля Е, причем с ростом Е сопротивление уменьшается. [c.100]


Смотреть страницы где упоминается термин Измерение адсорбированного количества: [c.310]    [c.35]    [c.110]    [c.176]    [c.483]    [c.991]    [c.56]    [c.72]   
Адсорбция, удельная поверхность, пористость (1970) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Аппаратура для измерения адсорбированного количества адсорбции, адиабатический

Аппаратура для измерения адсорбированного количества калориметр

Измерение адсорбированного количества аппаратура

Измерение адсорбированного количества метод, весовой

Измерение адсорбированного количества растворенных веществ

Измерение количеств

Количество адсорбированного



© 2025 chem21.info Реклама на сайте