Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изопропиловый спирт получение из пропилена

    Сырьем для получения изопропилового спирта служит пропилен (получение изопропилового спирта см. на стр, 56). [c.66]

    Одним из важных продуктов нефтехимии является изопропиловый спирт, используемый в больших количествах в качестве растворителя, как сырье для дегидрирования или окисления в ацетон, для получения сложных эфиров и для других целей. Основные количества изопропилового спирта получаются в процессе гидратации пропилена, который во многом аналогичен гидратации этилена. Пропилен так же, как и этилен, может быть превращен в спирт по сернокислотному методу гидратации н прямой гидратацией на твердых катализаторах. Оптимальные условия гидратации пропилена по обоим этим методам несколько мягче, чем при получении спирта из этилена. Сернокислотная гидратация пропилена в промышленности была осуществлена еще в 20-х годах, задолго до организации производства синтети- [c.137]


    Большая часть химических синтезов на основе пропилена (получение изопропилового спирта, получение окиси пропилена методом хлоргидринирования, оксосинтез,алкилирование, олигомеризация и т. д.) может быть проведена со смесями пропан-пропилен. Для некоторых же синтезов (например, получение полипропилена,, сополимера этилена с пропиленом, акрилонитрила, акролеина, аллил-хлорида) необходим пропилен высокой степени чистоты. Применяемые при получении полипропилена катализаторы отравляются содержащимися в пропилене кислородом, окисью углерода и углекислым газом, а также соединениями серы и водой. Кристалличность и молекулярный вес полимеров сильно изменяются под влиянием посторонних олефинов. [c.47]

    Производство изопропилового и бутилового спиртов. Основной способ получения изопропилового спирта — из газов крекинга, содержащих пропилен. Процесс начали применять в 1920 г. [c.202]

    В патентной литературе чаще всего упоминаются два катализатора, применяемые для дегидрирования изопропилового спирта металлическая медь и окись цинка. Медь страдает тем недостатком, что ее активность уменьшается в процессе работы, а окись цинка вызывает в некоторой степени дегидратацию изопропилового спирта в пропилен. В промышленности сейчас, по-видимому, предпочитают производить ацетон дегидрированием, используя в качестве катализатора окись цинка, чистую или промотирован-ную. Одним из преимуществ этого метода по сравнению с методом окисления изопропилового спирта, о котором сообщается ниже, является то, что при дегидрировании в качестве побочного продукта получается чистый водород. В Германии производство ацетона осуществлялось дегидрированием изопропилового спирта, полученного из Сд—С4-олефинов, образующихся в процессе каталитического гидрирования окиси углерода при атмосферном давлении в жидкое топливо (гл. 3, стр. 62 и гл. 8, стр. 149). [c.315]

    Пропилен, 96—98%-ный, получен дегидратацией изопропилового спирта над природным алюмосиликатом. [c.82]

    Пропилен служит для получения изопропилового спирта, являющегося хорошим растворителем и заменяющего в ряде случаев этиловый спирт—в производстве лаков, парфюмерии и др. [12, 13]. [c.16]

    Пропилен применяется для синтеза очень многих важных органических соединений, к которым прежде всего относятся изопропиловый спирт (стр. 106), являющийся в свою очередь исходным продуктом для получения ацетона (стр. 138) изопропилбензол (стр. 261) — исходный продукт для получения фенола и ацетона (стр. 280), а также а-метилстирола (стр. 262) глицерин (стр. 112) окись пропилена (стр. 119) пропиленгликоль (стр. 119) и др. Особенно перспективным использованием пропилена является его переработка в полипропилен— новый синтетический полимер, обладающий целым рядом очень ценных свойств (стр. 383). [c.74]


    Пропилен, значительные количества которого содержатся в газах крекинга нефтеперерабатывающих заводов , служит исходным сырьем для получения изопропилового спирта, хлористого аллила, [c.68]

    После достижения в реакционной среде заданной температуры подают с определенной скоростью высушенный над серной кислотой пропилен, полученный дегидратацией изопропилового спирта над природным алюмосиликатом. Скорость подачи газа должна быть равна скорости его поглощения, что определяется минимальным проскоком его через реакционную колбу. [c.128]

    Изопропиловый спирт. Одним из первых спиртов, полученных синтетически в иромышленном масштабе, является изопропиловый спирт (из пропилена). Серная кислота поглощает пропилен более активно, чем этилен, но следует принять меры по снижению выхода полимеров. Эту побочную реакцию можно замедлить поддержанием относительно низкой температуры реакционной смеси и работой с кислотой 85%-нон концентрации при давлении 21—28 атм. Практикуется также добавление к реакционной смеси нейтрального масла. Кроме того, полимеризацию можно замедлить, работая при высоком парциальном давлении пропилена, что благоприятствует образованию нейтрального эфира. [c.578]

    Этот способ также является одним из основных промышленных способов получения ацетона, он на 40% дешевле способа получения ацетона из изопропилового спирта. Исходными продуктами служат бензол и пропилен. [c.68]

    Пропилен (табл. 7) входит в состав газов крекинга (стр. 75, табл. 8). Может быть получен дегидрированием пропана, входящего в состав попутного нефтяного газа (стр. 59). Служит сырьем для получения глицерина (стр. 126) и изопропилового спирта из последнего затем получают ацетон (стр. 117). Полимеризацией пропилена получают полипропилен (стр. 469) — синтетический высокополимер, по ряду свойств превосходящий полиэтилен (стр. 468). [c.77]

    Гидратацией пропилена получают изопропиловый спирт. Для получения пропионовой кислоты к пропилену присоединяют бромоводород против правила Марковникова (в присутствии пероксидов), бромид гидролизуют, спирт окисляют. [c.177]

    Получение и очистка пропилена. В реактор 6 насыпают гранулированную окись алюминия, заполняют газгольдер И водопроводной водой, а хроматографические колонки 14 — специально обработанной окисью алюминия (см. стр. 52). Включают установку, задают напряжение на лабораторном автотрансформаторе 120 б, нагревают реактор до 400 С и прокаливают катализатор при этой температуре 4—5 ч. Включают обогрев колонки поворотом рукоятки регенерация и прогревают адсорбент в токе азота при 180—200 С в течение 5 ч затем дают колонке остыть и закрывают вентиль газ-носитель . В поплавок 12 наливают 2С0 мл изопролилово-го спирта, открывают дроссель 8 и начинают подачу спирта в реактор со скоростью 1 мл мин. При 380 "С происходит дегидратация изопропилового спирта. Образующийся пропилен проходит через ловушку 10, где о.хлаждается и освобождается от примесей паров спирта и эфира. В фильтрах 4 пропилен очищается от образовавшихся низкомолекулярных соединений и несконденси-ровавшихся паров спирта и эфира. Затем пропилен поступает в газгольдер 11. После накопления 15—16 л пропилена прекращают подачу спирта в реактор, напряжение на автотрансформаторе понижают до нуля. Открывают вентиль разделяемый газ , пропилен из газ о ьде-ра поступает в хроматографическую колонку и адсорбируется окисью алюминия. О полной насыщенности адсорбента можно судить по смещению нулевой линии на диагра.мме потенциометра. Газ-носитель подают в колонку под давлением 0,2 кгс см со скоростью 50 л ч. О начале и конце выхода фракций судят по показаниям потенциометра. [c.109]

    Из отстойника экстракт поступает в освинцованный реакционный аппарат с турбомешалкой (гидрол1 атор), где разбавляется водой до получения 40%-ного раствора, который перемешивается приблизительно в течение 1 ч при 50 °С. После 4-часового пребывания в аппарате без перемешивания спирт и образующийся диизо-пропиловый эфир экстрагируются водяным паром. Пары спирта и эфира промываются 1% раствором едкого натра. После разбавления водой до концентрации 15% конденсат выдерживают несколько дней для отделения полимеризата. При ректификации вначале выделяют 2% легкокииящих компонентов, во второй колонне изопропиловый спирт концентрируют до 91,3%-ной азеотропной смеси, кипящей нри 80,4 С. Выход изопропилового спирта составляет 85—90% по отношению к исходному пропилену. [c.57]

    Отделение Сз-углеводородов ректификацией от j- и С4-углеводородов происходит легко и практически не представляет никаких затруднений. Поэтому в одинаковой степени легко выделить пропан-пропиленовый концентрат из отходящих газов колонн стабилизации или из крекинг-газов, полученных любым методом. Такой концентрат пригоден для получения основного продукта химической переработки пропилена — изопропилового спирта [гидратация пропилена в изопропиловый спирт описана в гл. 8, стр. 148]. Однако для производства целого ряда других продуктов, число которых все время возрастает, требуется чистый пропилен, в связи с чем возникает задача отделения его от пропана. С помощью простой ректификации этого достигнуть нелегко, так как относительная летучесть пропилена из смесей с пропаном составляет при 3 ата и —20 всего лишь 1,15. С повышением давления это отношение несколько уменьшается чтобы избежать низких температур и использовать для конденсации газов водяное охлаждение, пропан-пропиленовую фракцию необходимо разгонять под давлением не менее 15 ата. Несмотря на все это, можно без особых затруднений осуществить в большом масштабе получение 98%-ного пропилена [13, 32]. Разделение пропилена и пропана происходит пегче, если применить азеотропную перегонку в присутствии чммиака [32] аммиак изменяет отношение давлений паров пропилена и пропана, увеличивая относительную летучесть пропана. [c.126]


    Существуют четыре промышленных метода синтеза ацетона из пропилена. Три из них, где ацетон получается как побочный продукт, являются новыми это получение изопропилового спирта и перекиси водорода (1957 г.), получение акролеина и аллилового спирта (1957 г.) и кумол-фенольный метод синтеза (1953 г.). Четвертый метод, по которому пропилен гидратируется в изопропиловый спирт, а затем дегидрируется в ацетон, применяется еще с 1923 г. и в настоящее время остается крупнейшим химическим потребителем пропилена. [c.396]

    Одна из трудностей, которые возникают при осуществлении этого процесса, заключается в том, что пропилен легко полимери-зуется. Присутствие в изопропиловом спирте этих примесей особенно нежелательно в том случае, если продукт предназначается для превращения его с помощью другого каталитического процесса в ацетон. Образование полимеров увеличивается при низком соотношении между водой и пропиленом (фактически неприемлемы отношения этих продуктов ниже 2 1), при высокой температуре и, особенно, при высоком давлении. Однако при давлениях ниже 100 ат и температурах ниже 250° С степень превращения пропилена в изопропанол очень мала, поэтому для получения удовлетворительных скоростей реакции, выходов и чистоты продукта при приемлемых капитальных расходах приходится применять компромиссные условия проведения процесса. [c.59]

    Принципиально эти методы идентичны методам гидратации этилена они отличаются только технологическими параметрами, так как пропилен гидратируется намного легче, чем этилен. Благодаря высокой реакционной способности пропилена с серной кислотой, для гидратации можно применять менее концентрированную серную кислоту и вести процесс при более низких температурах и меньшей продолжительности контакта. Скорость полимеризации растет с температурой и с концентрацией кислоты больше, чем скорость этерификации. Пропилен более способен к побочным реакциям, чем этилен. Для получения наибольших выходов изопропилового спирта и наименьших количеств эфира и сокраш ения удельных расходов серной кислоты и вспомогательных материалов нужно работать с низкими превращениями, т. е. нри низких температурах, даже если для этого необходимо применять высокие давления. [c.431]

    Естественно, как и в случае химического использования этилена, если в процессах на основе пропилена можно применять пропилен меньшей концентрации и меньшей степени очистки, то целесообразно создание секции выделения пропилена с меньшим количеством ректификационных колонн и узлов очистки, что значительно сокращает капитальные и эксплуатационные затраты. Такими процессами, например, являются сернокислотная гидратация пропилена в изопропиловый спирт, алкилирование бензола пропилено м с целью получения кумола в присутствии серной кислоты и т. п. [c.70]

    Озол и Мастерсон [1419] очищали изопропиловый спирт, полученный из таких олефинов, как пропилен, обрабатывая его сначала водным раствором едкого натра, а затем подвергая многократной перегонке. Перед последней перегонкой спирт стабилизировали и избавляли от постороннего запаха, добавляя небольшие количества хлористой меди (0,5% или менее). [c.316]

    Окислительные способы синтеза глицерина призваны заменить хлорный метод его получения (стр. 181), связанный с большим расходом хлора и щелочи и с образованием отходов солей. В этих способах исходным сырьем служит пропилен. Его можно окислять в акроленн (стр. 419) и восстанавливать последний в аллиловый спирт путем каталитического перераспределения водорода с изопропиловым спиртом  [c.445]

    В ряде случаев технологический поток необходимо не только осушить, но и глубоко очистить от нежелательных примесей, например пропилен, используемый для получения хюлипропилена. В процессе полимеризации на стадии промывки полимера от каталнзаторно-го комплекса непрореагировавший пропилен загрязняется изопропиловым спиртом. Отработанный пропилен составляет значительную часть от общего объема сырья, поступающего на полимеризацию. Возвращение его в цикл является неотложной задачей. Но для этого нужно очистить пропилен от спирта. Остаточное содержание спирта не должно превышать 3 %о. [c.395]

    Лишь спустя 50 лет Рейнольдс [3] выделил очередной гомолог этого ряда — пропилен. Он наблюдал его при пропускании сивушного масла через накаленные трубки. Несмотря на то что для получения пропплепа и были разработаны специальные методы, в частности из пропилового и изопропилового спиртов, еще несколько последующих десятилетий пропилен оставался лишь лабораторным продуктом и промышленных процессов получения пропилена не существовало. [c.7]

    Пропан. Пропан встречается в больших количествах в природных газах, газах крекинга нефти, в газах, образующихся при перегонке нефти и синтезе бензина по Фишеру—Тропшу (см, ниже). Он может быть синтезирован из иодистого пропила или иодистого изопропила путем восстановления омедненным цинкрм. Этот углеводород го 5Ит более сильно светящимся пламенем, чем этан. Пропан является исходным продуктом для многочисленных синтезов, осуществляемых в широком масштабе в промышленности. Хлорированием его получают 1-хлор-, 2-хлор-, 1,2-дихлор- и 1,3-дихлор-пропан (см. талоидпроизводные), нитрованием — нитропарафины, исходные продукты для получения аминов. При дегидрировании пропана образуется пропилен (см. ниже), из которого в промышленности получают хлористый аллил, глицерин, изопропиловый спирт и т. д. Наконец, из пропана и пропилена путем полимеризации получают углеводороды с разветвленной углеродной цепью (2-,метилпентан, 2,3-диметилбутан и т. д ), служащие добавками к авиационному бензину (повышение октанового числа, см. стр. 87). [c.40]

    Раньше этот способ получения ацетона был практически единственным. Получение ацетона может быть осуществлено непосредственно из уксусной кислоты—пропусканием ее паров над нагретыми катализаторами (А12О3, ТЮ ). В настоящее время ацетон производится главным образом из газов крекинга нефти пропиленом алкилируют бензол и из образовавшегося кумола получают ацетон и фенол (см. стр. 453). Ацетон производят также дегидрированием изопропилового спирта, получаемого из пропилена. Для этого пары изопропилового спирта пропускают над металлической медью или окисью цинка  [c.213]

    Источником пропилена, как и этилена, служат продукты пиролиза компонентов попутного газа и жидких фракций нефти. Пропилен применяют для получения изопропилового спирта (перерабатываемого главным образом в ацетон), тримера и тетрамера пропилена, полипропилена, окиси пропилена, кумола, глицерина, изопрена и др. [c.324]

    Пропилен, 96—987о-ный, получен дегидратацией изопропилового спирта на алюмосиликатном катализаторе. Алюминий хлористый, безводный, технический. [c.109]

    Диизопропилсульфат. Диизопропилсульфат может быть легко получен взаимодействием пропилена с 98%-ной серной кислотой при низкой температуре [321, 465], причем пропилен абсорбируется значительно быстрее, чем этилен. Диизопропилсульфат также синтезирован с выходом 25—30% обработкой изопропилового спирта [462] или изопропилата атрия [461, 4366, 466] хлористым сульфурилом. Повидимому, пелесообразнее применять спирт, так как выход эфира в этом случае не ниже, чем при использовании пропилата натрия. При наличии дешевого пропилена наибольшее практическое значение приобретает первый из упомянутых выше путей получения диалкилсульфата. Можно отметить, что Неф [460] не смог приготовить диизопропилсульфат действием иодистого изопропила на сернокислое серебро. [c.81]

    В СССР В. В. Пигулевский и Н. Рудакова [30, 31] детально изучили алкилирование уксусной кислоты пропиленом, полученным из газов парофазного крекинга, в присутствии серной кислоты. Первоначально авторы превращали пропилен в изопропиловый спирт через изопропилсерную кислоту и затем из спирта и уксусной кислоты получали изопропилацетат. Однако в дальнейшем они установили, что тот же изопропилацетат получается с хорошим выходом при поглощении непосредственно пропилена эквимолекулярной смесью уксусной и серной кислот. [c.8]

    Второй член ряда олефинов, пропилен СзНб, может быть получен из двух различных гидроксильных производных пропана, пропи-лового и изопропилового спиртов, путем отщепления воды  [c.43]

    Первичный пропиловый спирт содержится в по(У1едних фракциях при перегонке продуктов спиртового брожения. Изопропиловый спирт легко образуется при восстановлении ацетона. В настоящее время большие количества его получают в США из дешевого и легкодоступного сырья — пропилена, содержащегося в газах крекинга нефтепродуктов. Для этого пропилен поглощают серной кислотой и образовавшийся эфир подвергают гидролизу. Изопропиловый спирт часто применяют в промышленности в качестве заменителя этилового спирта кроме того, он расходуется в больших количествах на получение ацетона. [c.126]

    Пропилен, пропен СНз—СН = СНг — бесцветный газ. Выделяется из газов нефтепереработки. В лабораторных условиях можно получать, пропуская пары пропилового или изопропилового спирта над АЬОз при 300—400°С. Служит сырьем для получения изопро-цилбензола, ацетона, глицери1 а,--этгхлиргидрина, акрилонитрила, синтетического каучука, изопропилового спирта и др. [c.73]

    Более экономичным методом получения Н2О2 является окисление углеводородов. Например, газ пропилен СНзСН = СН2 гидратацией превращают в изопропиловый спирт СНзСН(ОН)СНз, окисляя который кислородом получают ацетон СНзСОСНа и Пероксид водорода в соотношении по массе 1,7 1.,  [c.235]

    МПа, молярном избытке Нг 2,5, скорости подачи жидкого ацетона 0,25—1,00 ч" [142, с. 129]. В табл. 3.11 приведены показатели процесса, полученные в присутствии катализаторов, обладающих основными и кислотными свойствами. В качестве гидрирующего компонента в этих катализаторах использовались Рс1, Си и N1. Реакция гидроконденсации ацетона протекает наиболее селективно (73%) на катализаторе Рс1/МоОз-А120з. Конверсия ацетона в этом случае составляет 32,25%. Из промышленных катализаторов, обладающих кислотными свойствами, наиболее активными являются АП, ГИПХ-105 и никельхромовый конверсия ацетона составляет 40—74%), селективность — 12—20%. Основными побочными продуктами реакции являются изопропиловый спирт (ИПС) и диизобутилкетон (ДИБК). В незначительном количестве образуются легкокипящие примеси (ЛКП)—пропилен, 2-метилпентан и 2-метилпентен. [c.251]

    При полимеризации пропилена для получения тетрамеров и пентамеров, идущих на производство моющего вещества — ал-килбензолсульфоната натрия, применяется твердый фосфорнокислый катализатор — фосфорная кислота на кизельгуре. В присутствии серной кислоты пропилен полимеризуется незначительно происходит сульфирование пропилена, и основным продуктом является изопропилсульфат, гидролизом которого получают изопропиловый спирт. Полимеры образуются лишь при совместной полимеризации пропилёна и бутилена или других олефинов. В присутствии фосфорной кислоты конверсия пропилена в полимеры достигает 90%. [c.72]

    При синтезах изопропилового спирта, пропиленгликоля, кумола, тетрамеров пропилена и других применяют в качестве сырья смеси Сз, содержащие 40—10% пропилена. Это намного облегчает опергу цию приготовления сырья. На обычных установках фракционирования газов легко получают такие смеси. Этот технический продукт не пригоден для синтеза полипропилена и неэкономичен для получения кумола поэтому на соответственных установках предусматриваются секции фракционированного разделения и очистки смеси пропан -Н пропилен до концентрации не менее 98%. Фракционирование осуществляется перегонкой в высокоэффективных колоннах с 80—130 т. т. под давлением 15—20 ат и кратностью орошения, 10 1—20 1. [c.392]

    Смесь паров изопропилового спирта и газообразного водорода (молярное соотношение 1 1) пропускают через трубчатый реактор, нагреваемый топочными газами до температуры около 380° С. Парогазовая смесь проходит катализатор, помеш,енный в узкие трубки реактора. Продолжительность контакта колеблется от 0,5 до 1,5 сек. Смесь продуктов реакции охлаждается водой около 50% ацетона конденсируется, а остальные продукты идут в колонну для промывки водой. В этой колонне растворяется весь остаток ацетона, нзопропиловый спирт и эфир. Полученный раствор содержит около 20% воды с верха колонны выходит чистый водород (не менее 99%, остальное пропилен и ацетон). [c.448]


Смотреть страницы где упоминается термин Изопропиловый спирт получение из пропилена: [c.447]    [c.115]    [c.464]    [c.469]    [c.60]    [c.252]    [c.2016]    [c.330]    [c.10]   
Введение в нефтехимию (1962) -- [ c.58 ]

Введение в нефтехимию (1962) -- [ c.58 ]




ПОИСК





Смотрите так же термины и статьи:

Изопропиловый спирт

Изопропиловый спирт Получение изопропилового спирта

Изопропиловый спирт з пропилена

Спирты Изопропиловый спирт

Спирты получение



© 2025 chem21.info Реклама на сайте