Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

разделение конденсационно

Рис. У-20. Схема разделения пирогаза конденсационно-ректификационным методом Рис. У-20. <a href="/info/332464">Схема разделения</a> <a href="/info/146659">пирогаза</a> <a href="/info/308710">конденсационно-ректификационным</a> методом

Рис. 22. Схема конденсационно-ректификационного разделения газов П [ро 1иа Рис. 22. Схема <a href="/info/308710">конденсационно-ректификационного</a> разделения газов П [ро 1иа
    Низкотемпературная ректификация, при которой предварительно охлажденный газ в смеси с образовавшимся при этом конденсатом разделяется под давлением в ректификационной колонне. Обычно ректификация завершает процесс разделения газообразного топлива и применяется для получения индивидуальных углеводородов высокой чистоты. В этом случае на ректификацию подается только конденсат, выделенный из газа конденсационно-компрессионным методом. [c.198]

    В настоящее время в промышленном масштабе применяются абсорбционно-ректификационный и конденсационный методы разделения пирогаза, причем в условиях Советского Союза наибольшее распространение получил первый способ газоразделения. Однако проектные данные свидетельствуют о большей эффективности конденсационного метода, в особенности для крупных промышленных установок производительностью 60—70 тыс. т этилена в год и выше. При этом себестоимость этилена, полученного на установках с конденсационным газоразделением, снижается по сравнению с себестоимостью при работе по абсорбционно-ректификационным схемам на 20%, а удельные капиталовложения — на 35% [24]. [c.38]

    Проработка сублимационного объемно-центробежного способа Исследования вихревых труб и аппаратов и опыт эксплуатации промышленных образцов показали их высокие конденсационно-сепарационные свойства при очистке парогазовых смесей. Однако какая-то доля сконденсировавшихся паров выносится из аппаратов. Эти факты объясняются положениями качественной теории процесса энергетического разделения газа в вихревой трубе. Как было показано, в случае жидкой дисперсной фазы найдено много интересных оригинальных конструктивных решений ее сепарации и повышения общей эффективности вихревой трубы и аппаратов. Однако эти решения не могут быть использованы для случая сублимирующихся продуктов, в частности, продуктов парофазного окисления дурола, так как они обладают пирофорными свойствами. В этом случае в конструкции аппарата должны быть исключены застойные зоны, в которых могла бы скапливаться дисперсная фаза. [c.110]

    Неон получают совместно с гелием в качестве побочного продукта в процессе сжижения и разделения воздуха. Разделение гелия и неона осуществляется за счет адсорбции или конденсации. Адсорбционный метод основан на способности неона в отличие от гелия адсорбироваться активированным углем, охлаждаемым жидким азотом. Конденсационный способ основан на вымораживании неона при охлаждении смеси жидким водородом. [c.495]


    Ректификация под давлением широко используется в нефтехимической промышленности, в частности для разделения газа пиролиза углеводородного сырья. В этих случаях процесс разделения осуществляется абсорбционно-ректификационным или конденсационно-ректификационным методами, которые различаются в основном схемой и режимом работы метановой колонны. [c.275]

    Сравнение конденсационно-ректификационного и абсорбционно-ректификационного методов разделения пирогаза показывает, что первый по энергетическим показателям предпочтителен, однако последний более удобен в эксплуатации, проще в аппаратурном оформлении и требует меньше расхода электроэнергии. К достоинствам канденсационно-ректификационного метода следует также отнести возможность получения высококонцентрированных угле- [c.297]

    Конденсационно-отпарная колонна отличается от ректификационно-отпарной колонны тем, что разделяемая смесь подается в нее на верхнюю тарелку. Верхней укрепляющей частью в ней служит конденсатор-холодильник орошения внешнего холодильного цикла. На рис. HI.83 изображен наиболее распространенный вариант конденсационно-отпарной колонны. В этой схеме дистиллят, выходящий из колонны, смешивается перед холодильником 1 с потоком сырого газа, идущего на разделение. [c.247]

Рис. 88. Конденсационные ловушки для улавливания продуктов разделения, выходящих из колонки препаративного газового хроматографа Рис. 88. Конденсационные ловушки для улавливания <a href="/info/332340">продуктов разделения</a>, выходящих из <a href="/info/139642">колонки препаративного</a> газового хроматографа
    Одна из распространенных конструкций роторно-пленочных колонн показана на рис. ХП-24. Она состоит из колонны, или ректификатора I, снабженного наружным обогревом через паровые рубашки 2 и ротором 5, роторного испарителя 4 и конденсатора 5. Ротор, представляющий собой полую трубу с лопастями, охлаждаемую изнутри водой, вращается внутри корпуса колонны. Исходная смесь подается в колонну через штуцер 6. Сверху колонна орошается флегмой, поступающей из конденсатора 5 через штуцер 7. Пар подается в колонну через штуцер 8 из испарителя 4, снабженного неохлаждаемым ротором и аналогичного пленочному выпарному аппарату. Поднимаясь в пространстве между ротором 3 и корпусом колонны 1, пар конденсируется на наружной поверхности ротора. Образующаяся пленка конденсата отбрасывается под действием центробежной силы по поверхности лопастей ротора к периферии. Попадая на обогреваемую внутреннюю поверхность, жидкость испаряется и образующийся пар поднимается кверху. Таким конденсационно-испарительным способом (при работе колонны в неадиабатических условиях) достигается четкое разделение смеси при малом времени ее пребывания в аппарате и незначительном перепаде давлений по высоте колонны, так как большая часть внутреннего пространства корпуса заполнена потоком пара. Роторные испарители типа испарителя 4 могут быть использованы в качестве самостоятельных аппаратов для вакуумной дистилляции смесей, чувствительных к высоким температурам. [c.498]

    Конденсационно-ректификационный метод разделения пирогаза [c.5]

    Разделительные ступени каскадов снабжаются необходимыми регулировочными органами (регуляторами потоков и давлений, критическими шайбами, ламинарными сопротивлениями), позволяющими выполнить условия каскадирования с достижением максимальной разделительной способности ступеней. Возможность перестраивать конфигурацию каскадов (их длину и ширину ступеней) и варьировать место подачи потока питания позволяют реализовать наиболее производительные режимы разделения. Конденсационно-испарительные установки (КИУ) обеспечивают возможность отбора необходимой фракции с требуемыми потоками. Отборы могут поступать в различные ёмкости, для чего в КИУ имеется значительная степень свободы движения потоков газа по необходимым направлениям. [c.222]

    Ректификация является завер1пающей стадией разделения газовых смесей. Она применяется для получения нндивндуаль-,ных углеводородов высокой чистоты. Поскольку разделение на компоненты смеси газов проводить затруднительно, при существующих схемах газоразделения на ректификацию подают жидкость, выделенную из газа конденсационно-компрессионным или абсорбционным методом. Особенность ректификации сжиженных газов по сравнению с ректификацией нефтяных фракций — необходимость разделения очень близких по температуре кипения продуктов и получения товарных продуктов высокой счепени чистоты. Ректификация сжиженных газов отличается также повышенным давлением в колоннах, поскольку для создания орошения необходимо сконденсировать верхние продукты ректификационных колонн в обычных воздушных и водяных холодильниках, не прибегая к искусственному холоду. Чтобы сконденсировать, например, изобутан при 40 °С, надо поддерживать давление в рефлюксной емкости бутано-вой колонны и, следовательно, в самой колонне не ниже 0,52 МПа. [c.289]

    Пиролиз ведется в трубчатых печах, получающийся пирогаз подвергается разделению по конденсационному методу, [c.315]


    На рис. 1.45 зависимости Ato, = /(ц) даны для вихревых труб диаметром 20 мм с ВЗУ (р = 60°), имеющими плоские (h = 0) и выдвинутые диафрагмы (h равна 5 и 9 мм), при давлении 2,4 МПа (л = 4). Как показывают кривые, выдвинутые диафрагмы снижают Ato при увеличении л до 0,4, при ц от 0,4 до 1,0 такого влияния уже не ощущается. Однако для этой же трубы, но при начальном давлении 0,6 МПа и л, равном 3 и 4, при выдвинутой диафрагме (h 8 мм) Atox снижалось уже на всем диапазоне изменения ц при ге = 2 это влияние незначительно (рис. 1.45). Для вихревой трубы диаметром 16 мм при выдвинутой диафрагме также снижалась Ato в диапазоне ц от 0,2 до 0,8 (pi = 0,6 МПа, я = 4, ВЗУ с р = 75°). Следует ожидать положительного влияния выдвинутой диафрагмы при совмещении процессов температурного разделения с конденсационно-сепарационными процессами. [c.66]

    Регенерация пропана. Из процессов регенерации углеводородных растворителей процесс отгонки бензиновых растворителей (технического гептана и др.) от продуктов депарафинизации проводят на наиболее простых перегонных устройствах, применяемых для разделения продуктов на дистиллят и остаток, значительно отличающихся друг от друга по температурам кипения. Эти устройства или установки включают нагреватель огневого или парового нагрева, колонный испаритель, оборудованный двумя-четырьмя отбойными или ректификационными тарелками, конденсационные, теилообменные и вспомогательные аппараты. Растворитель отгоняют в исиарителе острым водяным паром. Для переработки растворов с высоким содержанием растворителя можно применять циркуляционную систему нагреза, а также двухступенчатый нагрев и отгон. [c.234]

    Технологический процесс разделения смол ректификацией обязательно включает предварительную подготовку, заключающуюся в обезвоживании смолы, освобождении ее от взвешенных и зольных примесей, а также растворенных солей. Повышение содержания воды в смоле на 1% увеличивает на 3—4% расход топлива и охлаждающей воды, а также поверхность конденсационной аппаратуры [41, с. 183]. [c.160]

    В настоящее время препаративные газовые хроматографы выпускает наряду с аналитическими хроматографами приборостроительная промышленность. Как и в аналитических приборах, в них применяются проявительный способ разделения. Но они существенно отличаются от аналитических приборов по характеру, конструкции и назначению отдельных узлов. Прежде всего, как уже сказано, отличие состоит в применении хроматографических колонок намного большего диаметра. Далее, детектор играет вспомогательную роль, так как перед ним ставится ограниченная задача контроля за качеством разделения. Он автоматически переключает поток газа нз колонки в Конденсационную ловушку во время отбора продуктов разделения. Переключается поток во время конденсации каждого пика по программе, задаваемой экспериментатором, с помощью электромеханических или электронных устройств. Конденсация происходит в специальных ловушках, погруженных в сосуд Дьюара с жидким азотом или охладительной смеси из твердой двуокиси углерода и ацетона. Если разделяют высококипящие вещества, ловушки можно охлаждать проточной водой. При разделении газообразных веществ, например углеводородных газов, целесообразно ловушки наполнять адсорбентом. Адсорбированные целевые продукты разделения потом десорбируют при повышенной температуре, газы конденсируют в стальные баллончики, погру- [c.213]

    В отличие от попутного нефтяного газа газы крекинга содержат значительное количество (до 40% об.) алкенов от этилена до бутиленов. Разделение крекинг-газа на фракции совмещается с процессом стабилизации крекинг-бензина, то есть процессом извлечения из него растворенных газообразных углеводородов. Подобная переработка крекинг-газа и крекинг-бензи-на осуществляется на газофракционирующих установках (ГФУ) конденсационно-компрессионного или абсорбционного типа. На рис. 9.4 представлена принципиальная схема этого процесса, а на рис. 9.5 приведена технологическая схема ГФУ [c.200]

    Ниже приведены примеры, которые должны разъяснить принцип разделения газов компрессионно-конденсационным методом. [c.158]

    Технологическая схема. На отечественных НПЗ существуют установки газоразделения следующих типов абсорбционно-газофракцио-нирующие (АГФУ), конденсационно-ректификационные и газофракционирующие. На АГФУ сочетается предварительное разделение газов на легкую и тяжелую части абсорбционным методом с последующей их ректификаций конденсационно-ректификационный метод заключается в частичной или полной конденсации газовых смесей е последующей ректификацией конденсатов. [c.89]

    МПа (4—6 кгс/см2), температура в испарителе 100—110°С. Из испарителя продукт конденсации в виде перегретого раствора поступает в пароотде-литель 6, где происходит разделение жидкой и паровой фаз. Жидкая фаза (конденсационный раствор) дозировочным насосом непрерывно перекачивается в смеситель 10 для замешивания композиции мелалита, а пары воды и частично формальдегида поступают в холодильник 7. В смедитель 10 одновременно с конденсационным раствором подается сульфитная целлюлоза. Замешивание массы мелалита в смесителе производится при 80—90 °С. Продолжительность пребывания массы в смесителе— 10 мин. Из смесителя сырая масса мелалита по транспортеру непрерывно передается в ленточную сушилку 11. Температура воздуха в сушилке не превышает 150 °С, продолжительность сушки составляет 1,5—2 ч. Высушенная масса мелалита поступает на помол в шаровую мельницу 12, куда отдельными порциями вводят добавки сыпучих компонентов — белила, красители, смазку, катализатор. [c.72]

    Детектор играет вспомогательную роль, так как перед ним ставится ограниченная задача контроля за качеством разделения. Он автоматически переключает поток газа из колонки в конденсационную ловушку во время отбора продуктов разделения. Переключается поток по программе, задаваемой экспериментатором, с помощью электромеханических или электронных устройств. [c.279]

    Флотационное разделение приобретает за последнее время все больший размах и широту. Так, в сочетании с методами конденсационного получения дисперсных систем (раздел 11.2) его используют для коллоидно-химического извлечения молекулярных и ионных компонентов из растворов. За последнее десятилетие в технологию прочно вступила молекулярная и ионная флотации. Например, добавление растворимых солей жирных кислот (мыл) к растворам, содержащим ионы щелочноземельных или тяжелых металлов (Ва, Са, Си, 2п и др.), приводит к образованию нерастворимых мыл, объединяющихся в коллоидные частицы, которые затем легко флотируются. Этот метод перспективен для извлечения следов ценных металлов из воды Океана. [c.60]

    В технике низкотемпературного разделения используются три вида конденсационно-испарительного метода непрерывное нспарение смеси, непрерывная конденсация и ректификация [26]. Во всех случаях для проведения этих процессов при Т< < 7 о.с требуется отвод тепла при конденсации на уровне T и его подвод при испарении на уровне Т-л>Тк, которое при 7 <Го.с осуществляется только посредством трансформаторов тепла. [c.228]

    Среди технических методов конденсационно-испарительного (КИ) низкотемпературного разделения господствующее место занимает ректификация. Чтобы проанализировать ее особенности применительно к низким температурам и роль трансформации тепла в этом процессе, необходимо рассмотреть некоторые условия его проведения и энергетический баланс. [c.236]

    В реальных условиях весьма трудно с помощью пористых мембран обеспечить чисто кнудсеновский механизм разделения компонентов. Это объясняется адсорбцией или конденсацией их на стенках пор мембраны и возникновением дополнительного, так называемого конденсационного, или поверхностного, газового потока, наличие которого приводит к снижению Кр. [c.331]

    На рис. П-3, а, б показаны принципиальные схемы установки с конденсационно-испарительными аппаратами для разделения паровых и жидких смесей. Работа разделительной колонны по Таким схемам, например, при разделении паровых смесей, будет протекать следующим образом. Исходная паровая смесь поступает в трубное пространство, колонны 1. Проходя трубки, она частично испаряется, в результате чего в верхней части колонны образуется необходимое орошение и происходит концентрация легколетучих компонентов в парах. Жидкость, стекающая из трубного пространства, через дроссель 3 подается на верх колонны в межтрубное [c.32]

    Разделение пластовой продукции газоконденсатных месторождений на фракции производится на газоперерабатывающих заводах.(ГПЗ) и промысловых установках с применением абсорбционных, адсорбционных, хемосорбционных, конденсационных и других процессов [2—5]. [c.7]

    Разделение отсоса горячего и холодного воздуха предотвращает возможность образования конденсационных паров и завихрений, повышающих скорость воздушного потока, в результате чего возможен унос кристаллов сахара. [c.809]

    Неон. Неоно-гелиевая смесь, очищенная адсорбционным методом от других примесей, подвергалась последующему разделению конденсационным методом с применением жидкого водорода, кипящего в вакууме. Полученный таким образом неон со-держиг ничтожные примеси гелия, которые едва улавливаются спектроскопическим методом [Л. 2]. [c.50]

    В схемах разделения углеводородного газа с использованием конденсационно-отпарных колонн (см. рис. 35) сырой газ охлаждается последовательно обратным потоком сухого газа (или смешивается с ним), доохлаждается в холодильниках с внешним хладагентом и поступает на разделение в сепаратор, откуда отбензиненный газ выводится с установки, а сконденси- [c.143]

    Газофракционирующие установки. Установки разделения газов (ГФУ) подразделяются по типу перерабатываемого сырья—на установки предельных и непредельных газов и по типу применяемой схемы извлечения целевых компонеитон из газов — на установки конденсационно-компрессионные и абсорбционные. Как на установках конденсационно-компрессионного типа, так и па установках абсорбционного типа извлеченная из газа жидкая смесь [c.289]

    Мембранное газоразделение-разделение на компоненты газовых смесей или их обогащение одним из компонентов. При использовании пористых перегородок с преим. размером пор (5-30)-10 мкм разделение газов происходит вследствие т. наз. кнудсеновской диффузии. Для ее осуществления необходимо, чтобы длина своб. пробега молекул была больше диаметра пор мембраны, т. е. частота столкновений молекул газа со стенками пор превышала частоту взаимных столкновений молекул. Поскольку средние скорости молекул в соответствии с кинетич. теорией газов обратно пропорциональны квадратному корню их масс, компоненты разделяемой смеси проникают через поры мембраны с различными скоростями. В результате пермеат обогащается компонентом с меньшей мол. массой, концентрат-с большей. Коэф. разделения смеси = и,/ 2 = (Мз/М,) , где 1 и 2-числа молей компонентов соотв. с мол. массами М1 и М2. В реальных условиях весьма трудно с помощью пористых мембран обеспечить чисто кнудсе-новский механизм разделения компонентов. Это объясняется адсорбцией или конденсацией их на стенках пор перегородки и возникновением дополнительного т. наз. конденсационного либо поверхностного газового потока, наличие к-рого приводит к снижению К . [c.25]

    В описанных выше конденсационных методах получения аэрозолей коллоидно дисперсная фаза возникапа из молекулярно дне персной (газообразной) фазы В диспергационных же методах происходит разделение сравнительно больших объемов твердых или жидких тел на частицы коллоидных размеров Сообщаемая жидкости энергия заставляет ее принять неустойчивую форму и распадаться на капли, твердое тело диспергируется на мелкие частицы Процесс распыления жидкостей интенсивно исследовался в связи с конструированием и эксплуатацией форсунок, широко используемых в промышленности, однако физические его основы еще не вполне выяснены и механизм распыления еще не поддается количественному теоретическому анализу Это прискорбно, поскольку точное знание физики распьпеьия имело бы не тотько научное, но и практическое значение, так как определило бы пути [c.43]


Смотреть страницы где упоминается термин разделение конденсационно: [c.106]    [c.73]    [c.162]    [c.176]    [c.131]    [c.598]    [c.44]    [c.102]   
Разделение воздуха методом глубокого охлаждения Том 2 (1964) -- [ c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Кислородные установки для получения неона конденсационным разделением неоно-гелиевой

Комплексная установка для сжижения водорода и разделения неоногелиевой смеси конденсационным методом (В. Г. Фастовский и Петровский)

Конденсационно-испарительная схема разделения

Конденсационно-ректификационное разделение газа

Конденсационно-ректификационное разделение газов

Конденсационно-ректификационный метод разделения газов

Конденсационное разделение газов пиролиза

Неоно-гелиевая разделение адсорбцией разделение конденсационное

Разделение газов крекинга компрессионно-конденсационным методом (схема Линде

Разделение пирогаза методом ректификации ожиженного газа под давлением (компрессионно-конденсационный способ)

Разделение смесей по конденсационно-испарительной схеме



© 2025 chem21.info Реклама на сайте