Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Программирование оптимизация

    Начиная с первичных публикаций (31], в которых рассматриваются вопросы компаундирования авиабензинов с применением метода линейного программирования, оптимизации процесса смешения нефтепродуктов посвящено значительное число работ теоретического и прикладного характера. Большое внимание, уделяемое моделированию и оптимизации процессов смешения, объясняется тем, что операция смешения является завершающей в производстве товарной продукции, а для математического описания - самой сложной. [c.16]


    Необходимость в седьмом этапе — программе оптимизации — зависит от выдвигаемых требований и надежности и реальности математической модели установки каталитического крекинга. Не имеет смысла выполнять трудную задачу программирования оптимизации, если эта программа никогда не будет использована или если она будет давать сомнительные результаты. В качестве критерия оптимизации можно принять или максимальную степень превращения сырья, или максимальную прибыльность, основывающуюся на условных ценах продуктов. Для оптимизации можно изменять любые параметры сырья и эксплуатационного режима, которые действительно можно регулировать в логически оправданных пределах на реальных установках. В качестве таких параметров можно использовать, например, пределы кипения сырья, отношение суммарного сырья к свежему, количество находящегося в реакторе материала, расход водяного пара на отпарку. Хотя существуют многочисленные методы оптимизации, широко используется метод, в основе которого лежат логика и цикличность работы вычислительной машины. Программирование проводится по следующей схеме. [c.13]

    Наконец, несколько работ было посвящено применению методов динамического программирования оптимизации сложных схем [c.11]

    Алгоритмические методы синтеза технологических схем предполагают использование известных методов оптимизации динамического, линейного и нелинейного программирования. Сущность [c.101]

    Применение метода динамического программирования для оптимизации процессов с распределенными параметрами или в задачах динамической оптимизации приводит к решению диф([)еренциальных уравнений в частных производных. Вместо решения таких уравнений зачастую значительно проще представить непрерывный процесс как дискретный с достаточно большим числом стадий. Подобный прием оправдан особенно в тех случаях, когда имеются ограничения на переменные задачи и прямое решение дифференциальных уравнений осложняется необходимостью учета указанных ограничений. [c.32]

    Важной характеристикой любой оптимальной задачи является ее размерность п, равная числу переменных, задание значений которых необходимо для однозначного определения состояния оптимизируемого объекта. Как правило, решение задач высокой размерности связано с необходимостью выполнения большого объема вычислений. Ряд методов (например, динамическое программирование и дискретный принцип максимума) специально предназначен для решения задач оптимизации процессов высокой размерности, которые могут быть представлены как многостадийные процессы с относительно невысокой размерностью каждой стадии. [c.34]


    Следует также отметить, что множители Лагранжа часто применяют и в других методах оптимизации в качестве вспомогательного средства, позволяющего упростить решение более сложных задач (подробно см. главы, посвященные изложению вариационного исчисления и динамического программирования). [c.139]

    Вьиие уже была рассмотрена вычислительная процедура метода динамического программирования при оптимизации процесса, в котором размерность векторов состояния п управления < > на каждой стадии равна 1. Очевидно, что решение задачи может усложниться, если размерность вектора состояния гп или векторов управления г [c.259]

    Решение задач оптимизации методом динамического программирования обычно проводится на цифровых вычислительных машинах и результаты всех промежуточных вычислений для первого этапа решения задачи обычно хранятся в памяти машины в форме таблиц, соответствующих соотиошениям  [c.261]

    При оптимизации многостадийных процессов с рециркулируемыми потоками методом динамического программирования решение задачи облегчается тем, что направление вычислительной процедуры данного метода совпадает с направлением движения указанных потоков. Именно это обстоятельство и требует лишь незначительного усложнения общей расчетной процедуры оптимизации при наличии рециклов в процессе без изменения размерности решаемой задачи. [c.297]

    Более сложная задача возникает при использовании метода динамического программирования для оптимизации процессов с байпасными потоками. Поскольку направление расчета противоположно направлению такого потока, при выборе оптимального управления на стадии, к которой он подводится, состояние этого потока, так же как и состояние выхода предшествующей стадии, необходимо исследовать во всем возможном диапазоне изменения его параметров. Другими словами, размерность задачи выбора оптимального управления изданной стадии увеличивается на размерность состояния байпасного потока. [c.297]

    Пап этом величины ( > (>ч. А,.,), < + 1) ( A,. ) и и( + (X,, к..) определяются в результате однократного использования метода динамического программирования для оптимизации многостадийного процесса при заданных постоянных значениях и X.,. [c.303]

    Достоинства метода динамического программирования при решении оптимальных задач для процессов невысокой размерности неоспоримы, поскольку он принадлежит к числу немногих методов оптимизации, при применении которых полученное решение соответствует глобальному оптимуму. [c.319]

    Следует отметить, что значение линейного программирования не исчерпывается решением задач только указанных типов. Сообщается , что в методах решения задач так называемого выпуклого программирования существенным образом используется вычислительный аппарат линейного программирования. Кроме того, иногда при рассмотрении сложного нелинейного объекта иногда удается представить его математическое описание в некоторых локальных областях изменения независимых переменных приближенными линейными соотношениями. Это позволяет свести исходную задачу оптимизации к задаче линейного программирования. Тем самым становится возможным применять его математический аппарат, который в настоящее время разработан достаточно подробно и при наличии цифровой вычислительной машины обеспечивает решение оптимальных задач весьма высокой размерности. [c.413]

    Более подробно операции методов нелинейного программирования рассмотрены в работе [16] обзор методов, которые были применены при расчете смешения бензинов, приведен в работе [17] Следует отметить, что чем более точной является модель смешения, тем выше эффект от оптимизации поэтому в работах последних лет пользуются преимущественно методами нелинейного программирования. В настоящее время созданы и успешно эксплуатируются автоматизированные системы оптимального приготовления товарных бензинов [18]. [c.189]

    НОГО регулирования, сводящаяся к отысканию минимального значения интеграла (3,202), может быть решена вариационным методом, а в случае дискретного изменения потоков в зависимости от N — методами динамического программирования. Оптимизация потребления электроэнергии дает возможность сузить межступенные потоки в прямоугольном каскаде [3.209], чтобы приблизить пх к экономически оптимальному распределению Ь М). Поэтому она позволяет увеличивать КПД прямоугольно-ступенчатого завода. Хигаши [3.256] показал, что при сужении потока через каждые 50 ступеней КПД (3.204) завода, состоящего из трех прямоугольных участков, увеличивается от 0,937 до 0,97 (рис. 3.32) при сужении потока с шагом на уровне технологического блока (8—20 ступеней) КПД завода возрастает до 0,98—0,99. Сужение потока будет выравнивать значения Се для ступеней одного прямоугольного участка. Но вблизи головной и хвостовой части каскада потери работы разделения неизбежны. [c.149]


Рис. 15-21. Динамическре программирование а — оптимизация предпоследней ступени на основе обобщенной целевой функции б — оптимизация предпоследней ступени на основе локальной целевой функции этой ступени в — оптимизация ряда элементов процесса на основе локальных целевых функций отдельны ступеней г — общая схема динамического программирования. Рис. 15-21. Динамическре программирование а — оптимизация предпоследней ступени на основе обобщенной <a href="/info/24572">целевой функции</a> б — оптимизация предпоследней ступени на основе <a href="/info/826443">локальной целевой функции</a> этой ступени в — оптимизация <a href="/info/592406">ряда элементов</a> процесса на основе <a href="/info/826443">локальных целевых функций</a> <a href="/info/1849161">отдельны ступеней</a> г — <a href="/info/24353">общая схема динамического</a> программирования.
    В книге в доступной форме изложены основы методом оптимизации (классический анализ, вариационное исчисление, принцип максимума, динамическое, линейное и нелинейное программирование) с иллюстрацией их на объектах химической технологии. Сформулированы общие положения, касающиеся выбора критериев о[1ти-мальности химико-технологических процессов, и приведены их математические модели. Рассмотрены задачи, связанные с оптимизацией конкретных процессов. [c.4]

    Динамическое программирование идеально приспособлено для решения задач оптимизации многостадийных процессов, особенно задач, в которых на каждой стадии имеется небольшое число пере-мепньгх. Однако при наличии значительного числа этих переменных, т. е. при высокой размерности каждой стадии, применение метода динамического программирования затруднительно вследствие ограниченных быстродействия и объема памяти вычислительных машин. [c.29]

    Динамическое программирование (см. главу VI) служит эффективным методол решения задач оптимизации дискретных многостадийных процессов, для которых общий критерий оптимальности 01И1сьшается аддитивной функцией критериев оптимальности отдельных стадии. Без особых затруднений указанный метод можно распространить на многостадийные процессы с байпасными и рецир- [c.31]

    Названием методы нелинейного программирования объединяется большая группа численных методов, многие из которых приспособлены для репгения оптимальных задач соответствующего класса. Выбор того или иного метода обусловлен сложностью вычисления критерия оптимальности и сложностью ограничивающих условий, необходимой точностью решения, мощностью имеющейся машины и т. д. Ряд методов нелинейного программирования практически постоянно используется в сочетании с другими методами оптимизации, как, например, метод сканирования (см. главу IX, стр. 551) в динамическом программировании. Кроме того, эти методы служат основой построения систем автоматической оптими- [c.33]

    Ряд методов оптимизации, как, например, динамическое программирование, дает достаточную информацию о чувствительности оптимума уже в процессе их использования для решения оптимальных задач. Другие методы менее приспособлены к анализу чувствител ,-ностн оптимума. Лишь для задач линейного программирования имеется до некоторой степени разработанный математический аппарат (параметрическое линейное программирование), позволяюи1Ий изучать поведение оптимального решения при измеиенпи коэффициентов математического описания . [c.39]

    Кроме того, на примере оптимизации реактора изложен подход к решению реальной вариационной задачи с ограничениями типа неравенств. Решение этих задач представляет собой, вообще говоря, весьма сложную проблему. Однако задачу оптимизации реактора идеального вытеснения все же можно решить, если принять во внимание некоторые свойства оптимизируемого процесса. К сожалению, и общем случае не представляется возможным указать достаточно удобные методы решения вариационных задач с ограничениями тйпа неравенств. Поэтому для каждого конкретного процесса приходится искать са.мый удобный прием или же решать задачу с помощью других методов, например динамического программирования или принципа максимума, более приспособленных для решения таких адач. [c.222]

    Именно для решения задач оптимизации многостадийных процессов, а также процессов, которые могут быть математически описаны как многостадийные, создан и в настоящее время уснеишо применяется метод динамического программирования. [c.244]

    Динамическое программирование, как и все методы, рассмотренные в предыдущих главах, применяется для оптимизации математически описанных процессов. Поэтому в дальнейшем для многостадийного процесса (рис, VI- ) предполагается изгзестиым математическое описание его каждо стадии, которое представляется в об1цем виде системой уравнений [c.246]

    Рассмотрим теперь, каким образом можно решить сформулиро-вапную вьипе комбинаторную задачу, используя метод динамического программирования. Как отмечалось выше, процедура решении задачи оптимизации при помощи принципа оптимальности начинается с оптимизации последней стадии процесса, результатом чего является иабор оптимальных ре1иений (управлений) па ней для любых в(имож-пых состояний входа этой стадии. [c.250]

    Общая процедура решения задачи методом динамического программирования. Проиллюстрируем процедуру решения задачи оптимизации многостадийного процесса на примере процесса, в котором размергюсть векторов состояния и управления на каждой стадии равна единице. Это позволяет повысить наглядность проводимых рассуждений при помощи графическ[1Х построений. [c.255]

    Проблема размерности. Таким образом, метод динамического программирования дает возможность при оптимизации многостадийных процессов расчленить задачу врлбора оптимальных управлений (t 1,. . ., N) па N задач, в каждой из которых выбирается только одно управление и< >. [c.259]

    После того как оптимальное значение у > определено выражением ( 1,160), оптимизация следующих (предыдущих) стадин проводится обычным порядком для завершения первого этапа решеиия оптимальной задачи методом динамического программирования, в результате чего находится стратегия оптимального управления для всех стадий процесса. [c.296]

    В предыдущих разделах настоящей главы рассматривались вопросы применения метода динамического программирования для оптимизации д и с к р е т н ы х многостадийных процессов. Именно при анализе таких процессов, которые допускают четкое разбиение на стадии, наиболее наглядно проявляются основные достоинства эгого метода как способа решения оптимальных задач для процессов с произвольным числом управляемых стадий. Однако метод дииами ческого программирования можно использовать также и для оптимизации ироцессов с распределенными параметрами и нестационарных процессов с сосредоточенными параметрами, которые изменяются непрерывно. При этом закон их изменения описывается системами дифференциальных уравнений [c.307]

    Рассмотренные в настоящей главе примеры использования метода динамического программирования для решения оптимальных задач затрагивают лишь относительно небольп1ую область возможного применения этого метода. Более полные сведения об его использовании для решения задач оптимизации могут быть найдены в литера-туре . [c.319]

    Для оптимизации процессов с распределенными параметрами предпочтительнее все же оказывается принцип максимума, которому посвящена следующая глава. Однако всегда нужно учитывать воз-мо кность аппроксимации непрерывного процесса дискретным многостадийным процессом и пользоваться указанной возмо кностью для решения оптимальных задач невысокой размерности. Это обусловлено 1см, что метод динамического программирования представляет в распоряжение исследователя весьма удобную процедуру оптимизации многостадийных процессов, которая сравнительно легко программируется на вычислительных ма1[шнах. [c.319]

    Прп оптимизации дискретных многостадийных процессов использование математического аппарата принципа максимума зачастую оказывается более эффективным, чем нримепенне метода динамического программирования. В особенности это относится к ранению оптимальных задач, где размерность отдельных стадий затрудняет использование вычислительной процедуры метода динамического программирования [c.393]

    Д )угпми словами, имеется только т отличных от нуля значений переменных среди общего числа п - пг переменных, для которых задача линейного программирования сформулирована как задача оптимизации критерия (VIII,43) с учетом ограничений (VIII,42). [c.426]

    Вместе с тем, владение методами нелинейного программировании нужно не только как самоцель, но также и в связи с использованием таких методов оптимизации, как динамическое программирование или принцип максимума, в которых на различных этапах приходится решать задачи нелинейного программирован1 я. [c.481]

    Рецептура товарного бензина основывается на показателях качества имеющихся компонентов и задании заводу по выпуску отдельных марок бензинов. Находят наиболее целесообразное и экономически выгодное соотношение компонентов для каждой иартпи бензина. Задача оптимизации компонентного состава товарных бензинов решается с помощью ЭВМ методом линейного или нелинейного программирования. С помощью ЭВМ при оптимизации учитывают наибольшее число факторов. [c.159]


Смотреть страницы где упоминается термин Программирование оптимизация: [c.205]    [c.102]    [c.342]    [c.263]    [c.267]    [c.272]    [c.280]    [c.284]    [c.481]    [c.547]    [c.490]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1961-1966) Ч 1 (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Программирование



© 2025 chem21.info Реклама на сайте