Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Палладиевые катализаторы дегидрирование

    Последующие стадии исследования представляли дегидрирование углеводородов ряда декалина, в.ходящих в состав исследуемой фракции. Для этой цели использовали палладиевый катализатор, приготовленный по методу Н. Д. Зелинского и М. Б. Туровой-Поляк. [c.99]

    Правильный отбор экспериментальных данных может значительно упростить процесс нахождения подходящего уравнения. Могут оказаться полезными вспомогательные опыты по определению адсорбционных свойств. Так, например, на палладиевом катализаторе водород вовсе не адсорбируется, пропан адсорбируется слабо, а пропилен—сильно знание этих данных позволяет значительно сузить выбор возможного механизма каталитического дегидрирования пропана. [c.226]


    Известны промышленные процессы изомеризации на хлористом алюминии в его присутствии можно осуществлять реакцию при низких температурах — от 50 до 150° С. Поскольку процессы подробно описаны [8, 75], далее они не рассматриваются. Весьма активно влияют на реакцию изомеризации катализаторы гидрогенизации и дегидрирования (сульфид вольфрама, окись молибдена, платина и др.) [76—79]. В промыщленности широко применяют платиновые и палладиевые катализаторы на кислых носителях — синтетических алюмосиликатах и фторированной окиси алюминия [7, 78, 80]. Эти катализаторы активны при 370—480° С. Несмотря на менее благоприятные термодинамические условия проведения реакции, чем при использовании хлористого алюминия, над платиновыми катализаторами также удается достичь глубокой изомеризации легких углеводородов. Так, степень изомеризации н-пентана за один проход может достигать 50—60%  [c.330]

    Наряду с платиновыми катализаторами для дегидрирования нафтеновых углеводородов применяли и другие металлические катализаторы среди них следует отметить палладиевые и никелевые. В отличие от платиновых и палладиевых катализаторов, никелевые катализаторы обладают ярко выраженными расщепляющими свойствами. [c.18]

    Типичные К. при гетерогенном катализе окисл.-восстановит. р-ций (окисления и восстановления, гидрирования и дегидрирования, разложения нестойких кислородсодержащих соед. и др.) — переходные металлы, их соед. и др. в-ва, способные отдавать и принимать электроны при взаимод. с реагентами (см., напр.. Палладиевые катализаторы, Ванадиевые катализаторы). В гомогенном катализе аналогичные р-ции протекают с участием комплексов переходных металлов (см. Комплексные катализаторы). Их каталитич. св-ва объясняются склонностью к образованию координац. связи с реагентами. Высокоактивные К. в кислотно-основных р-циях (крекинга, гидратации и дегидратации, гидролиза, нек-рых р-цйй полимеризации и изомеризации) — твердые и жидкие в-ва, способные отщеплять или присоединять протон при взаимод. с реагентами. При катализе апротонными к-тами взаимод. осуществляется через своб. пару электронов реагента (см. Кислотные катализаторы, Основные катализаторы). [c.248]

    Гидрирование винилацетилена протекает легче в присутствии палладиевого катализатора [15]. Катализатор может быть диспергирован в маслах, выделенных в качестве побочных продуктов при дегидрировании винилацетилена. Опыты показали [16], что наилучшие результаты получаются не при гидрировании в паровой фазе, а при гидрировании винилацетилена, растворенного в этилацетате, при 5—20° с применением в качестве катализатора палладиевой черни и палладия, нанесенного на инфузорную землю. Основными побочными продуктами этой реакции являются бути-лены, которые отделяются, как показано на стр. 37. [c.33]


    В присутствии платиновых и палладиевых катализаторов циклогексан молсет быть дегидрирован в бензол. [c.216]

    Дегидрирование алициклических кетонов. В специально подобранных условиях и в присутствии особых дегидрирующих агентов (сера, селен, бром и иод, а также платиновые или палладиевые катализаторы) фенолы могут быть получены из соответствующих циклогекса-нонов. [c.309]

    Гидразин Пропан NHз, N3. Нз Дегид Продукты дегидрирования Хелатный полимер палладия 108° С [929]° рирование Палладиевый катализатор проток [930] [c.361]

    В присутствии платинового или палладиевого катализаторов тетрагидро-тиофен может быть дегидрирован до тиофена [324]. [c.148]

    Каталитическим гидрированием фенола получают циклогек-санон или циклогексанол в зависимости от состава катализатора. Получение циклогексанона для использования в производстве капролактама предпочтительнее, так как позволяет исключить энергоемкую стадию дегидрирования циклогексанола. Гидрирование фенола в циклогексанон изучалось в жидкой [240] и паровой фазах [241-243] на нанесенных палладиевых катализаторах. [c.124]

    Превращение алкена в алкан можно осуществить также с помощью, обменной реакции гидрирования (Линстед, 1954). В этой реакции водород не используется как таковой, а передается каталитически от донора, которым обычно служит циклогексен. Таким образом, при кипячении алкена с циклогексеном в присутствии палладиевого катализатора получается соответствующий алкан. При этом в результате дегидрирования циклогексен вначале превращается в циклогексадиен-1,3-(1,2-дигидробензол)  [c.210]

    Пиперидин может быть дегидрирован в пиридин нагреванием с серной кислотой или с помощью никелевых или палладиевых катализаторов. [c.545]

    Азулен впервые синтезирован пропусканием би цикл о(0,3,5)-деканола над палладиевым катализатором при 300—350°. При этом происходят одновременно дегидратация и дегидрирование  [c.574]

    Подобно алифатическим вторичным аминам, замещает имин-ный атом водорода различными остатками (алкилы, ацилы, нитрозогруппа и т. п.). Может быть дегидрирован в пиридин нагреванием с серной кислотой или с помощью никелевых или палладиевых катализаторов. Достаточно устойчив к таким окислителям, как перманганат калия в кислом растворе, хромовый ангидрид, азотная кислота. [c.623]

    Равновесие реакций гидрирования нормальных олефинов Gg и g было исследовано А. А. Введенским и П. Я. Иванниковым [6] при атмосферном давлении и температурах 350—450° С в присутствии палладиевого катализатора. В своей работе авторы определяли суммарное количество соответствующих олефпнов при дегидрировании нормальных гексана и октана. Равновесие было исследовано с двух сторон. [c.265]

    Однако не следует думать, что реакция гидрирования этилена в эхан н на самом деле проста и протекает лишь в одном направлении. Ее можно легко осуществить даже при температуре —100°С на многих платиновых или палладиевых катализаторах и, конечно, при повышенных температурах, когда эта реакция идет очень активно. Но если при атмосферном давлении температура превышает приблизительно 700 °С, то начинается реакция дегидрирования. Термическое дегидрирование этана является промышленным способом получения этилена и обсуждается в гл. 4. [c.117]

    Реакция идет с выделением тепла в присутствии платинового или палладиевого катализаторов при комнатной температуре. Эти реакции играют значительную роль при дегидрировании циклоалканов и при гидрировании аренов. Так, винилциклогексен дает смесь этилциклогексана и этилбензола  [c.144]

    Научные основы процесса каталитического риформинга углеводородов были заложены в начале XX в. В 1911 г. Зелинский показал, что на платиновом и палладиевом катализаторах можно без побочных реакций проводить дегидрирование шестичленных циклоалканов в арены. В том же году Ипатьев осуществил эту реакцию на окпсном металлическом катализаторе. В 1936 г. одновременно в трех лабораториях Советского Союза была открыта реакция дегидроциклизации алкайэв в арены Молдавский и Ка-мушер осуществили эту реакцию при 450—470°С на окиси хрома Каржев с сотрудниками — при 500—550°С на медно-хромовом катализаторе Казанский и Платэ —с применением платины на активном угле при 304—310°С. [c.252]

    Химические основы каталитического риформинга в присутствии металлических и окисных катализаторов были разработаны русскими химиками Н. Д. Зелинским и В. Н. Ипатьевым. Возможность проведения дегидрогенизации шестичленных нафтеновых углеводородов над платиновым и палладиевым катализаторами количественно, практически без побочных реакций, при 300 °С была показана Н. Д. Зелинским еще в 1911 г. [13]. В этом же году дегидрогенизацию нафтеновых углеводородов при контакте их с окислами металлов осуществили В. И. Ипатьев и Н. Довгелевич [14]. В 1932 г. В. Лозье и Дж. Вогену также удалось провести дегидрирование циклогексана на окиси хрома [15]. [c.9]

    Окисление воздухом показывает, что стойкость полиметиленовых циклов ниже, чем у ароматических, и еще понижается с увеличением молекулярного веса за счет заместителей. Продуктами окисления являются кислоты и оксикислоты. Дегидрогенизация полиметиленовых углеводородов легко протекает с платиновым или палладиевым катализаторами. Предложено также много катализаторов смешанного типа, работающих при температурах более высоких, чем в случае платины, в результате чего, кроме продуктов дегидрирования, получаются в небольшом количестве ароматические углеводороды, образовавшиеся вследствие дегидроциклизации. Смешанный платиново-железный катализатор снижает роль реакций дегидроциклизации. Дегидрирование позволяет количественно перевести шестичленные полиметиленовые углеводороды в ароматические, причем, пятичленные изомеры, а также гемзамещенные остаются незатронутыми. Платиновый катализатор имеет значение не только в аналитической химии, но применяется также в заводских процессах ароматизации средних нефтяных фракций, превращающихся при температуре около 400° в смесь легких углеводородов, содержащих большое количество ароматических.  [c.87]


    Для дегидрирования циклоалканов и циклоалкенов применяют обычно платиновые и палладиевые катализаторы на активир. угле, А12О3, СаСОз и спец. керамич. носителях, В нек-рых случаях используют также нанесенные никелевые катализаторы. [c.340]

    Данные, полученные в настоящей работе, резко отличаются от известных из литературы. Так, А. А. Баландин [3], изучая влияние освеще-нк я ультрафиолетовым излучением на активность палладиевого катализатора при реакции дегидрирования циклогексана и этанола, не обнаружил акого-либо действия света на каталитическую реакцию. Л. В. Писаржевскому с сотрудниками [4] удалось обнаружить ускоряю-Щ( е действие ультрафиолетового излучения на распад перекиси водоро-,.Д ,, катализируемый платиной, двуокисью свинца и графитом. Однако Я. К. Сыркин и И. Н. Годней [5], исследовавшие ту же систему, нашли, что константа скорости распада перекиси водорода при совместном дей- [c.157]

    Типичные результаты, полученные при дегидрировании различных гид-роароматических углеводородов, приведены в табл. 13. В качестве акцептора водорода сначала применяли бензол, свободный от тиофена, однако в более поздних работах показано, что соединения серы увеличивают скорость реакции [291]. Добавление приблизительно 1 части серы (в виде дифенилсульфида или тиофена) на 20 частей никелевого катализатора обеспечивает оптимальнун концентрацию промотора. Линстед и Томас [292] нашли,что гидронафталины, содержащие четвертичные углеродные атомы, могут быть дегидрированы в паровой фазе на платиновом или палладиевом катализаторах, нанесенных на древесный уголь. [c.140]

    В основу метода положена открытая Н. Д. Зелинским реакция дегидрогенизационного катализа циклогексана и его гомологов в присутствии платинового или палладиевого катализатора при температуре около 300 °С. Дегидрирование в этих условиях приводит к образованию с количественным выходом бензола и его гомологов, структура которых соответствует структуре исходных гексаметилеиовых УВ [60, 65]. [c.361]

    Перераспределение водорода между разными молекулами связано с миграцией водорода и диспропорционированием и может быть использовано как метод дегидрирования или как метод гидрирования. В работах Брауде, Линстеда и Митчелла [44] приводится список литературы по использованию тетралина, циклогексанола и других спиртов в качестве доноров ири гидрировании в присутствии никеля или палладия и малеиновой кислоты, коричной кислоты, бензола и ацетона в качестве акцепторов при каталитическом дегидрировании. Было найдено, что дегидрирование в присутствии палладия с использованием малеиновой кислоты в качестве акцептора [185] в некоторых случаях дает хорошие результаты [290]. Адкинс с сотр. [1—3] тщательно исследовали реакции дегидрирования в запаянной ампуле с использованием палладиевого или никелевого катализатора и бензола в качестве акцептора. Изучено гидрирование этиленовых и ацетиленовых связей [44], нитросоединений [46] и других акцепторов [45] циклогексеном в присутствии палладиевого катализатора. [c.170]

    Определенный интерес представляют оценки методов промышленного производства продуктов тяжелого органического синтеза, при наличии нескольких альтернативных путей их получения. Так, для производства фенола подтверждается общепринятая точка зрения на преимущество кумольного метода, хотя ав-торам известны технико-экономические подсчеты в пользу итальянского процесса, где исходным продуктом является толуол, а также в пользу метода американской ф Ирмы S ientifi Design, основанного на дегидрировании смеси циклогексанола и циклогексанона. При рассмотрении различных методов получения капролактама выбор процесса синтеза ставится в зависимость от местных условий. Оценивая различные пути получения линейных а-олефинов, авторы указывают на такое важное преимущество алюминийорганического синтеза из этилена, как возможность регенерации исходного триэтилалюминия ректификацией и возвращения его в цикл. Из многочисленных различных методов получения ацетона наиболее эффективным считается жидкофазное окисление пропилена в присутствии палладиевого катализатора. [c.6]

    Изменение стабильности углеводородов с ростом молекулярного веса подтверждается также закономерностями процессов дегидрирования на палладиевом катализаторе (табл. 35). Несмот- [c.53]

    В данной работе определялось содержание алкенилароматических соединений, полученных в результате дегидрирования алкиларома-тических соединений типа изопропилбензола и смеси изомеров изо-пропилтолуола методом каталитической гидрогенизации. При подборе катализатора, обеспечивающего полное гидрирование алкенильной цепочки и не затрагивающего в то же время бензольное кольцо, были исследованы платиновый [2] и палладиевый [3] катализаторы. Большинство исследований было проведено с палладиевым катализатором. [c.134]

    До сих пор мы рассматривали почти исключительно дегидрогенизацию изоциклических соединений. В последнее время различные методы дегидрогенизации, особенно каталитические методы, были с успехом распространены на область гетероциклических соединений, причем довольно подробно была изучена дегидрогенизация азотсодержащих гетероциклов. Н. Д. Зелинским и П. П. Борисовым детально описано поведение пиперидина в присутствии платиновых и палладиевых катализаторов [256]. Пирролидин [257, 258] и его производные [259—261], как показали Н. Д. Зелинский и Ю. К- Юрьев, могут быть легко дегидрированы в пирролы. Подобным же образом никотин быстро превращается в никотирин [262, 263]. В последнем случае была также использована сера, но при этом получались совершенно неудовлетворительные выходы дегидрированных продуктов [264]. Декагидрохинолин [265, 266] и декагидроизохино-лин [267, 268] дегидрируются с большой легкостью. В связи с этим интересно отметить, что 5,6,7,8-тетрагидрохинолин может быть получен при частичной дегидрогенизации декагидрохино- [c.189]


Смотреть страницы где упоминается термин Палладиевые катализаторы дегидрирование: [c.127]    [c.127]    [c.501]    [c.5]    [c.14]    [c.208]    [c.118]    [c.208]    [c.118]    [c.14]    [c.475]    [c.176]    [c.153]    [c.105]    [c.124]    [c.186]   
Гетерогенный катализ в органической химии (1962) -- [ c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидрирование катализаторы

Палладиевые



© 2025 chem21.info Реклама на сайте