Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам в природе

    Массовое содержание хрома, молибдена и вольфрама в земной коре оценивается в 2-10 , 1-10 и 7-10 % соответственно. Хром встречается в природе главным образом в виде хромистого железняка РеО-СггОз, при восстановлении которого углем получают сплав железа с хромом — феррохром, используемый в металлургии при производстве хромистых сталей. Чистый хром получают методом алюмотермии. Наиболее распространенным соединением молибдена является минерал молибденовый блеск МоЗг, из которого получают металл в виде порошка. Компактный молибден (и компактный вольфрам) получают методом порошковой металлургии прессование порошка в заготовку и спекание заготовки. [c.321]


    Природа хемосорбционной связи и ее прочность должны зависеть от природы металла и адсорбируемой молекулы. Зависимость между теплотой адсорбций и весом -состояний удовлетворительно выполняется только для металлов восьмой группы. Что касается других переходных металлов, то о какой-либо зависимости этого типа трудно говорить от Та до N1 вес -состояний практически не меняется (39 и 40 соответственно), в то время как теплота адсорбции падает больше, чем вдвое. Вольфрам вообще выпадает из указанной зависимости (рис. 26). [c.151]

    Мышьяковые соединения весьма распространены в природе и в небольших количествах содержатся во многих рудах, в морской Воде и в водах источников. В большинстве случаев мышьяк входит в состав полиметаллических руд, содержащих цинк, свинец. Никель, кобальт, медь, серебро, золото, олово, вольфрам и серу. Количество мышьяка в таких рудах обычно меньше 1 % и его [c.656]

    Рений (порядковый номер 75) принадлежит к УП группе периодической системы Д. И. Менделеева. Ближайшими к рению по группе элементами являются технеций, который в природе не найден, и элемент 107, который еще не открыт. Ближайшими соседями по периоду являются вольфрам и элементы триады осмия, а по диагональным сечениям таблицы — молибден, уран, элементы триады рутения. Сопоставление свойств рения с его аналогами обеспечивает более полное получение информации о свойствах рения и его соединений [558]. [c.7]

    В зависимости от давления ацетилена и температуры могут быть получены различные нитевидные кристаллы графита. Однако температура подложки не должна быть ниже 900° С. На рост графитовых усов влияет как природа и состояние подложки (обычно металлы вольфрам, тантал, титан, рений и др.), так и условия обтекания ее потоком газа вследствие естественной конвекции. На металлических подложках, неоднократно использованных в опытах, нитевидные кристаллы растут реже, нежели на свежих. Особенно часто растут такие кристаллы на срезах металла, а также на неоднородностях поверхности. Если на поверхность металла нанести перед опытом царапину, то вдоль нее вырастут нитевидные кристаллы, как бы декорируя эту царапину. Когда на поверхности молибдена был осажден вольфрам с различной ориентацией, то наибольшее число нитевидных кристаллов графита выросло на поверхности с ориентацией <100>. [c.46]

    Второе подсемейство составляют торий, протактиний и уран. Эти элементы похожи на металлы третьего переходного ряда соответствующих групп — с 4-й по 6-ю, т. е. на гафний, тантал и вольфрам. Аналогия начинается со степеней окисления и включает химию некоторых бинарных соединений, поведение в водных растворах и образование комплексов. Однако по кристаллическим структурам ряда соединений эти элементы близки к лантаноидам, поэтому, в частности, торий в природе встречается в основном совместно с лантаноидами. [c.386]


    Что касается вольфрама и молибдена, то исследование процессов их электровосстановления, как и в случае металлов пятой группы, сводится в основном к выяснению возможности их выделения в металлическом виде из органических растворителей. В этом плане более подробно изучен вольфрам. О механизме и кинетике электродных процессов для обоих металлов известно лишь, что восстановление происходит до низших степеней окисления, а не до металла [1201, 1205, 1203, 1202, 1239, 264]. Так, в метаноловых растворах восстановление хлорида Mo(V) протекает необратимо до Мо(1И) [264], а оксокомплексы Mo(V) в ДМФ-растворах претерпевают одноэлектронное восстановление до соответствующих оксокомплексов Mo(IV), степень обратимости которого существенно зависит от структуры комплекса и природы лиганда [1239]. [c.96]

    Распространение в природе. Вольфрам относится к редким металлам. Образует ряд минералов. [c.418]

    Разнообразие объектов исследования и их свойства, с одной стороны, наличие различной чувствительности адсорбата г< химической природе определяемой поверхности, с другой, исключают монополию какого-нибудь одного адсорбата, даже если он в очень многих случаях дает хорошие результаты. Например, азот отвечает многим упомянутым требованиям и широко применяется для определения удельной поверхности, однако он не может быть использован для исследования веществ, содержащих вольфрам, никель, железо, окись хрома, на которых наблюдается его хемосорбция [52—54]. [c.155]

    Термодинамическая теория окислительного потенциала рассматривает окислительный электрод как индифферентный по отношению к раствору проводник электрического тока [6—12]. Поэтому в качестве электрода может быть применен любой, не взаимодействующий в данных условиях с раствором металл платина, золото, вольфрам, ртуть и т. д. Следствием термодинамической теории является деление систем на обратимые , в которых потенциал может быть измерен, и необратимые , в которых лотенциал измерить невозможно. Критерием обратимости или необратимости системы считается возможность или невозможность измерения в ней окислительного потенциала [7]. Величина окислительного потенциала в обратимой системе должна зависеть не от материала и состояния поверхности электрода, а только от концентрации и природы окисленных и восстановленных компонентов реакции [11]. Термодинамическая теория справедлива при условии достижения равновесия между окислительно-восстановительной системой и электродом. Термодинамическая теория не может, однако, характеризовать систему до наступления равновесия. Известно вместе с тем, что в слабых, т. е. имеющих слабую тенденцию вызывать потенциал на электроде, системах время установления потенциала может исчисляться не только часами, но и сутками [7—9, 17, 18]. К слабым системам относятся, как правило, системы молекулярно-водородные и в особенности кислородные. Впервые вопрос о кинетическом характере окислительного потенциала рассмотрен в работах Н И. Некрасова [19], где показано, что в случае достижения предельного потенциала в неравновесных системах или окислительного потенциала в равновесных, но медленно реагирующих системах, величина его определяется кинетическими факторами. Можно, однако, показать, что кинетические факторы имеют существенное значение не только при измерении окислительного потенциала в слабых системах — регулируя соответствующим образом кинетику установления потенциала, в принципе можно измерить окислительный потенциал в любых химически обратимых системах. [c.169]

    Вольфрам, молибден, ванадий и ряд других элементов, используемых при плавке сталей и специальных сплавов в качестве легирующих добавок, находятся в природе в виде окислов, входящих в состав различных минералов. Содержание подобных элементов в руде бывает очень незначительным, до 0,15—0,20 %, поэтому руды подвергают обогащению механической, термической или химической обработкой с целью получения концентратов, в которых содержание полезного окисла достигает 45—70% при незначительном содержании вредных примесей (фосфора, мышьяка и др.). [c.255]

    Возникновение пассивного состояния зависит от природы металла, его свойств, характера агрессивной среды, концентрации раствора электролита, температуры, движения раствора и целого ряда других факторов. Легко пассивирующимися металлами являются алюминий, хром, никель, титан, вольфрам, молибден [c.60]

    Для характеристики химической природы высокомолекулярных сераорганических соединений ромашкинской нефти был применен метод каталитического гидрирования над вольфрам-никельсульфид-ным катализаторо.м при температурах 250—300° С [143, 144]. Изучение продуктов гидрирования показало, что процесс идет гладко и не осложнен явлениями крекинга, о чем свидетельствует отсутствие в гидрогенизатах заметных количеств углеводородов с молекулярным весом ниже, чем в исходной фракции. Анализ продуктов показывает, что сера входит в состав гетероциклических соединений преимуш е-ственно конденспрованного бициклоароматического характера. [c.390]


    Для окисления Fe (И) в Ре (П1) используют азотную кислоту, а также другие окислители в зависимости от природы анализируемого объекта пероксидисульфат аммония, перманганат калия. Проведению реакции мешает ряд веш,еств. Прежде всего должны отсутствовать анионы кислот, которые дают более прочные ко1 шлексиые соединения, чем роданиды железа фосфаты, ацетаты, арсенаты, фториды, бораты, а также значительные количества хлоридов и сульфатов. Также должны отсутствовать элементы, ионы которых дают комплексные соединения с роданидом кобальт, хром, висмут, медь молибден, вольфрам, титан (III, IV), ниобий, палладий, кадмий, цинк, ртуть. [c.151]

    Шеелит — один из минералов, в виде которого вольфрам встречается в природе. Его формула — СаШ04, название  [c.88]

    Из металлов только золото, платина, осмий, иридий, ниобий, тантал и вольфрам устойчивы к действию азотной кислоты. Некоторые металлы (например. Ре, А1, Сг) пассивируются концентрированной азотной кислотой. Окислительными свойствами обладают и водные растворы азотной кислоты. Обычно процесс восстановления HNOз протекает в нескольких параллельных направлениях и в результате получается смесь различных продуктов восстановления. Природа этих продуктов, их относительное содержание в смеси зависят от силы восстановителя, концентрации азотной кислоты и температуры. Рис. 48 иллюстрирует относительное содержание продуктов восстановления азотной кислоты железом в зависимости от ее концентрации. [c.263]

    Все сульфиды металлов подгруппы хрома (Сг5, СгзЗз, Э5г и Э5з для Мо и У) достаточно термически устойчивы и обладают полупроводниковыми свойствами, что подчеркивает их неметаллическую природу. Все они представляют собой координационные кристаллы и обладают переменным составом, что особенно характерно для низших сульфидов. В этом отношении они заметно отличаются от галогенидов, которые нередко образуют или молекулярные структуры, или кластеры. Взаимодействие хрома, молибдена и вольфрама с селеном и теллуром протекает менее энергично, причем вольфрам с теллуром соединений не образует, а в остальных случаях в системах образуется небольшое количество соединений, отвечающих лишь [c.345]

    Нахождение в природе и методы получения металлов в свободном состоянии. Хром встречается в виде своих, соединений хромистого железняка РеО-СгаОз, или РеСгз04 крокоита РЬСг04. Хром в земной коре составляет 6- 10 % (мае.).] Молибден извлекается из природных соединений молибденита МоЗз и вульфенита MgMo04. а вольфрам — из шеелита Са У04 и вольфрамита (Ре, Мп) Ш04. Молибден и вольфрам составляют в земной коре [c.340]

    Распространение в природе и получение молибдена и вольфрама. Природный молибден состоит из семи, а вольфрам — из пяти изотопов. В литосфере содержится, % (мае.) молибдена 3-10- , а вольфрама б-Ю" . Важнейшие минералы этих металлов молибденит MoSj, вульфенит РЬМо04, шеелит aW04, вольфрамит (Fe, Mn)W04 и некоторые другие. Из них выплавляют сплавы с железом — ферромолибден и ферровольфрам. [c.416]

    Элементы подгруппы хрома в природе. Получение и применение. Хром, молибден и вольфрам в природе встречаются только в виде соединений. Наиболее распространен из них хром его содержание в земной коре составляет 2-10- % (масс.). Важнейшим минералом, в состав которого входит хром, является хромит хромистый железняк) Ре(Сг02)2- Содержание молибдена в рудах не превышает 1—2% (масс.), а в земной коре он находится в количестве 2,5-10- % (масс.). В промышленности для выделения молибдена используют следующие минералы молибденит (молибденовый [c.472]

    V I В-г р у п п ы. Самым распространенным минералом хрома является хромистый железняк (хромит) ГеО-СггОз. Вторая по значимости руда хрома — кро-коит — представляет собой хромат свинца РЬСг04- Наиболее распространенный минерал молибдена — молибденит (молибденовый блеск) МоЗг. Вольфрам представлен в природе главным образом в виде вольфраматов двухвалентных металлов. К ним относятся, например, вольфрамит — изоморфная смесь вольфраматов железа и марганца переменного состава Гег Мп1-х У04, шеелит Са У04, штольцит РЬ У04 и т.д. Помимо того, встречается вольфрамовый блеск У8г в смеси с молибденитом. [c.449]

    Нахождение в природе и методы получения металлов в свободном состоянии. Хром встречается н виде своих соединений хромистого железняка РеО-СггОз или РеСггО , крокоита РЬСг04- Хром в земной коре составляет 6-10 масс.%. Молибден извлекается из природных соединений молибденита МоЗа и вульфенита MgMo04, а вольфрам — из шеелита СаШО и вольфрамита (Ре, Мп) Ш04- Молибден и вольфрам составляют в земной коре соответственно 3-10 и б-10 масс. %. Получают эти металлы двумя путями в двух разных видах, как п ванадий  [c.355]

    Соединении мышьяка довольно широко распространены в природе, но в небольших количествах они встречаются во многих рудах, о морской воде и в водах источников. В большинстве с.1учаев мышьяк входит в состав полиметаллических руд, содержаш.их цинк, свинец, вольфрам и серу (до 1%). [c.52]

    В природе хром и вольфрам находятся в виде соединений с кислородом, а молибден — с серой (см. табл. 27). Из минералов наибольшее значение имеют Ре(Сг02)2 — хромистый железияк Мо82 — молибденит, Са У04 — шеелит, (Ре, Мп) У04 — вольфрамит. [c.598]

    Представляет интерес определить адгезию и смачиваемость твердых тел различной природы феноло-формальдегидной смолой. В данной работе изучалось смачивание 0 феноло-формальдегидной смолой новолачного типа твердых поверхностей различной природы — металлов (медь, никель, кобальт, железо, молибден, вольфрам, Ti, Та, Sn, Zn, Al, Ag — Си— Ti), окислов (AlaOg, SiOg), солей (Na l), алмаза, графита, кубического и гексагонального нитрида бора, карбида кремния. Исследовалось влияние поликонденсации и деструкции смолы на смачиваемость и адгезию. [c.124]

    Возникновение пассивного состояния определяется природой металла и составом агрессивной среды. К легко пассивирующимся металлам следует отнести, в первую очередь, хром, никель, алюминий, титан, вольфрам и др. Коррозионная стойкость нержавеющей стали обусловлена формированием на ее поверхности пассивных пленок при наличии в стали хрома. [c.20]

    ВОЛЬФРАМ (Wolframium) W, химический элем. VI гр. период. сист., ат. н. 74, ат. м. 193, 85. В природе 5 стаб. изото- [c.106]

    Минералы, руды и месторождения. Вольфрам доволыю широко распространен в природе. Его кларк2-10 % (по А. П. Виноградову), а по более ранним данным других исследователей — от 4,8 до 7 -10 %. В земной коре он находится в составе окисленных минералов — солей вольфрамовой кислоты, которые отлагаются в процессе выноса элементов из зоны первичной пегматитовой кристаллизации. Этим вольфрам геохимически отличается от молибдена и относится к литофильным элементам. Указанные процессы способствовали ассоциации вольфрама с геохимически легкоподвижными элементами—В1, 5п, Мо, Аз, Ы, Ве и др. [c.246]

    Марганец является достаточно распространенным элементом (0,09%), в то время как рений — один из самых редких и дорогих металлов (10" %). Марганец извлекают, восстанавливая природные оксиды углеродом или кремнием. Если исходным сырьем служит смесь пиролюзита МпОг оксидом железа, то результатом восстановления явится ферромарганец — легирующая добавка ко многим видам стали. Рений в природе обычно сопровождает вольфрам, своего соседа по таблице. Его получают восстановлением перрената KRe04 водородом. [c.183]

    Нахождение в природе. Молибден и вольфрам относятся к малораспространенным элементам в земной коре содержание молибдена составляет 3-10- вольфрама Ы0 %. Основными минералами молибдена являются молибденит, или молибденовый блеск МоЗа (сульфид молибдена), по внешнему виду напоминающий графит молибденит часто содержит в виде изоморфной примеси рений (10 —10 %) повеллит СаМо04 (молибдат кальция) нередко часть молибдена ( — 10%) в повеллите замещена вольфрамом Са(Мо, W)04, Меньшее значение имеют минералы вульфенит РЬМо04 (молибдат свинца) и молибдит лгРезОз-г/МоОз-геНзО. Молибден содержится также в медных и медно-свинцовых рудах (до 0,01%), которые используются для его извлечения при комплексной переработке сырья. [c.164]

    В ЭТОМ случае используют амфотерную природу некоторых металлов, таких, как цинк, алюминий, молибден, вольфрам и сурьма эти металлы, извлеченные из раствора катиоиообменной смолой, могут быть затем вытеснены из нее промывкой щелочью. Другие металлы, которые образуют нерастворимые гидроокиси, конечно, остаются на смоле. Некоторые исследователи, применившие этот метод, заявляют, что добились очень хорошего отделения молибдена и вольфрама от железа и алюминия от железа. Однако к этим сообщениям нужно относиться осторожно, так как другие исследователи получали неудовлетворительные разделения. Сейчас, конечно, слишком рано приходить к определенным выводам, но если сам принцип правилен, то, несомненно, кажущиеся расхождения в результатах найдут себе объяснение. [c.74]

    Систематические поиски неоткрытых аналогов маргап ца начали в 1922 г. немецкие химики Вальтер Ноддак и Ида Такке, ставшая позже супругой Ноддака. Они отлич но представляли себе, что найти элемент № 75 будет не легко в природе элементы с нечетными атомными номерами распространены всегда меньше, чем их соседи слева и справа. А здесь и четные соседи — элементы № 74 и 72, вольфрам и осмий, -достаточно редки. Распространенность осмия составляет величину порядка 10 %, поэтому для элемента № 75 следовало ожидать величины еще меньшей, примерно 10 % Так, кстати, и оказалось... [c.191]

    Один из этих путей связан с уже упоминавшейся ионизацией наносимых частиц при номогци их облучения электронами или ультрафиолетовым светом одноименно заряженные частицы обладают меньшей склонностью к агрегированию. На другой путь указывает работа Кейта [62, 66], который изучал влияние температуры подложки и природы остаточного газа в вакуумной установке на зернистость напыленных слоев меди Он нашел, что слои, напыленные на подложку, охлажденную до температуры жидкого азота, обладали слабо выраженной зернистостью, но при нагревании их в вакууме вблизи комнатной температуры наблюдался значительный рост зерен. Если же нагревание производилось в атмосфере кислорода, то окисление металла препятствовало росту зерен. Возможно, что применение таких металлов, как вольфрам, позволит получать по этому спбсобу слои с очень тонкой собственной структурой и в то же время обладаюш ие достаточным контрастом. Выше отмечалось, что слои окиси платины в отношении размера зерен предпочтительны по сравнению со слоями чистого металла. [c.87]

    При помощи масс-спектрометрпи можно зафиксировать частицы, образующиеся при ударе органической молекулы о нагретую металлическую проволоку или ленту. Опыт показывает, что в зависимости от природы молекулы и состояния металлической поверхности удар может быть либо эффективным, либо не эффективным даже при наиболее высокой температуре проволоки, при которой еще возможно использовать масс-спектрометр, т. е. при 1900° С. Только вольфрам и тантал, металлы, которые можно науглероживать, позволяют получить зону температур проволоки па несколько сотен градусов меньше 1900° С. Никель нельзя нагреть выше 1000°С (эффект Буша), платина очень летуча при температуре >1400° С. Было изучено четырнадцать органических соединений они выбирались таким образом, чтобы исследовать как молекулы с очень прочными связями (С—С в aHg), так и молекулы с относительно слабыми связями (С—J в HgJ и 0—0 в перекисях). [c.273]


Смотреть страницы где упоминается термин Вольфрам в природе: [c.120]    [c.329]    [c.335]    [c.473]    [c.455]    [c.633]    [c.56]    [c.56]    [c.180]    [c.455]    [c.106]    [c.267]    [c.211]   
Основы общей химии Т 1 (1965) -- [ c.360 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.364 ]

Основы общей химии том №1 (1965) -- [ c.360 ]




ПОИСК







© 2025 chem21.info Реклама на сайте