Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний, коррозия в морской воде

    Защитный эффект в отличие от разностного находит большое практическое применение в виде так называемой электрохимической катодной защиты, т. е. уменьшении или полном прекращении электрохимической коррозии металла (например, углеродистой стали) в электролитах (например, в морской воде или грунте) присоединением к нему находящегося в том же электролите более электроотрицательного металла (например, магния, цинка или их сплавов), который при этом растворяется в качестве анода гальванической пары из двух металлов (рис. 198), или катодной поляризацией защищаемого металла от внешнего источника постоянного тока. [c.295]


    Магний корродирует в морской воде со скоростью 1,45 г/ м -сут). Каково значение скорости коррозии, выраженное в мм/год Если с такой же скоростью корродирует свинец, каково соответствующее значение в мм/год  [c.386]

    Тепло, выделяющееся в результате коррозии, является одной из причин саморазогрева батарей. Вторая причина — большая разница между равновесным и стационарным значениями потенциала магния (стандартный потенциал Е°м.е + /1ле = = —2,36 В потенциал магния в морской воде около —1,4 В). [c.79]

    В тех случаях, когда коррозия сопровождается обильным выделением газа, можно определить степень коррозии по объему этого газа, собираемого в бюретки. Этот способ применяется, например, при испытании на коррозию магния в морской воде, нержавеющей стали в смесях кислот при повышенных температурах и т. д. [c.281]

    Алюминий и его сплавы чувствительны к контактной коррозии. В обычной атмосфере усиливает коррозию контакт с медью и медными сплавами, с никелем и его сплавами, с серебром. Допустим контакт со сталями, кадмием, цинком, хромом, титаном, магнием. В морской и пресной воде не допустим контакт с медью и ее сплавами, с титаном, с нержавеющими сталями, с никелем, оловом, свинцом, серебром. Допустим контакт с цинком и кадмием. [c.75]

    В продуктах коррозии железа в морской воде находится феррит магния или кальция, образующийся при замещении ионов железа двухвалентными катионами магния и кальция. Образующийся феррит магния связывает отдельные продукты коррозии, но не предотвращает лущение чешуйчатой ржавчины. [c.81]

    Водные растворы солей в зависимости от их состава и величины pH оказывают различное коррозионное действие на магний и его сплавы. Растворы, содержащие ионы хлора, вьь зывают более значительную коррозию, чем растворы с сульфат-или нитрат-ионами, так как на металлической поверхности образуется очень пористая пленка. Магний и его сплавы, за исключением специальных сплавов с высоким содержанием марганца, корродируют в морской воде. При одинаковом содержании хлорида натрия скорость коррозии в морской воде значительно выше, чем в чистом растворе хлорида натрия из-за наличия в морской воде агрессивных сульфат-ионов. Нейтральные и щелочные растворы фторидов не агрессивны по отношению к магнию и его сплавам вследствие образования защитной пленки. [c.135]

    Основные параметры, определяющие скорость и характер коррозии алюминия в морской воде. — это скорость движения воды, концентрация растворенного кислорода, pH и длительность эксплуатации. Например, при повышении скорости движения воды до 1,6 м/с скорость коррозии сплава с 3 % магния возрастает до 9,0 мм/год. Однако по дру-24 [c.24]


    Применение цинка очень разнообразно. Значительная часть его идет для нанесения покрытий на железные и стальные изделии, предназначенные для работы в атмосферных условиях или в воде. При этом цинковые покрытия в течение миогих лет хорошо защищают основной металл от коррозии. Однако в условиях высокой влажности воздуха при значительных колебаниях температуры, а также в морской воде цинковые покрытия неэффективны. Широкое промышленное использование имеют сплавы цинка с алюминием, медью и магнием. С медью цинк образует важную группу сплавов — латуни (см. стр. 571). Значительное количество цинка расходуется для изготовления гальванических элементов. [c.621]

    Следует отметить, что ни положение двух металлов в ряду потенциалов, ни их фактическая разность потенциалов не дают сведений о гальваническом токе, так как его значение зависит от кинетики катодной и анодной реакций, удельного сопротивления раствора, образования пленки, эффективных площадей двух металлов и др. Гальванический ток, конечно, можно определить непосредственным измерением с помощью амперметра с нулевым сопротивлением и соответствующим образом составленной гальванической парой, погруженной в рассматриваемую среду. Было бы грубым приближением сказать, что чем дальше расположены два металла в ряду потенциалов или чем выше ЭДС, тем больше гальванический ток, поскольку в этом правиле есть много исключений. Так, платина и ртуть имеют одинаковые потенциалы в морской воде ( 0,0 В отн. НВЭ), но хотя контакт платины с магнием (около —1,0 В отн. НВЭ) значительно увеличивает скорость коррозии магния, ртуть оказывает незначительное влияние на скорость коррозии магния. Это вызвано тем, что магний в морской воде корродирует с выделением водорода, а платина в отличие от ртути является хорошим катализатором для реакции выделения водорода. [c.38]

    Трубы на некотором расстоянии друг от друга и соединенные с трубой проволокой, превращают трубу в катод и предохраняют ее от ржавления. Сам магний при этом подвергается коррозии, но легче и дешевле заменять магниевые блоки, чем ремонтировать трубопровод (рис. 19-12). Блоки магния, прикрепленные к корпусу корабля, также предотвращают его ржавление в соленой морской воде. При таком способе защиты магний приносят в жертву, сохраняя более дорогостоящие железные предметы. [c.193]

    При коррозии магния в морской воде или подобных электролитах щелочь, образующаяся на алюминиевом катоде, может разрушить алюминий (h). [c.178]

    Определение коррозии по объему выделившегося при испытании газа применимо только в тех случаях, когда коррозия сопровождается обильным выделением газа. Газ собирают в бюретки и по объему его судят о степени коррозии. Этот метод применяется, например, при испытании на коррозию магния в морской воде, нержавеюш,ей стали в смесях кислот при повышенных температурах и т. д. [c.392]

    Коррозионная стойкость магния зависит от чистоты металла даже в большей степени, чем в случае алюминия. Подвергнутый дистилляции магний корродирует, например, в морской воде со скоростью 0,25 мм/год, что приблизительно вдвое превышает скорость коррозии железа. Однако технический магний корродирует в 100—500 раз быстрее, и процесс сопровождается видимым вы- [c.354]

    С учетом вышеизложенных особенностей изучали поведение хромомарганцевых сплавов, различных плавок в морской воде. Химический состав исследованных хромомарганцевых сплавов приведен в табл. V. 5. Полученные результаты с точки зрения практики оказались интересными. Хромомарганцевые сплавы, имеющие различные технологические дефекты, подверглись локальной коррозии. Очаги коррозии на них были обнаружены через 10—15 сут с начала опыта. Скорость коррозии этих сплавов в течение 3 месяцев увеличивается, а потом затормаживается. Агрессивное действие хлор-ионов наиболее сильно проявляется в местах технологических дефектов, в то время как изменения в составе сплавов существенного влияния не оказывают. По мере повышения температуры морской воды в некоторых случаях скорость коррозии замедлялась. Это объясняется тем, что происходит отложение карбонатов кальция и магния по реакции [c.70]

    Поскольку примеси в металле играют роль локальных элементов, можно ожидать, что их уменьшение значительно повысит коррозионную стойкость металла. Поэтому, например, алюминий или магний высокой чистоты более устойчивы к коррозии в морской воде или кислотах, чем технические металлы, а специально очищенный цинк менее растворим в соляной кислоте, чем технический. Однако ошибочно полагать, что чистые металлы вообще не подвержены коррозии, как считалось много лет назад, когда была предложена первая электрохимическая теория. Как мы увидим далее, локальные элементы возникают также при изменениях температуры или других параметров среды. Например, на поверхности железа или стали, покрытой пористым слоем ржавчины (оксиды железа), в аэрированной воде отрицательными электродами являются участки поверхности железа в порах оксидного слоя, а положительными — участки ржавчины, открытые для соприкосновения с кислородом. Отрицательные и положительные электродные участки меняются местами и перемещаются по поверхности в ходе коррозионного процесса. [c.22]


    В морской воде на коррозию цинка оказывают влияние сульфаты и хлориды. В присутствии -ионов хлора скорость коррозии увеличивается, однако одновременное наличие ионов магния и кальция замедляет коррозию, так как на цинке образуется защитный слой магниевых и кальциевых известковых отложений. [c.80]

    Морская вода является хорошо аэрированным ( 8 мг/л О ) нейтральным (pH = 7,2- 8,6) электролитом с высокой электропроводностью вследствие содержания от 1 до 4 % солей (хлориды, сульфаты натрия, магния, кальция, калия). В морской воде эксплуатируются буровые, причалы, пирсы, трубопроводы, сооружаемые в основном из сталей разных марок. Эти объекты и подвергаются интенсивной коррозии. [c.42]

    Протекторная защита и электрозащита. Протекторная защита применяется в тех случаях, когда защищается конструкция (подземный трубопровод, корпус судна), находящаяся в среде электролита (морская вода, подземные, почвенные воды и т. д.). Сущность ее заключается в том, что конструкцию соединяют с протектором — более активным металлом, чем металл защищаемой конструкции. В качестве протектора при защите стальных изделий обычно используют магний, алюминий, цинк и их сплавы. В процессе коррозии протектор служит анодом и разрушается, тем самым предохраняя от разрушения конструкцию (рис. 69). По мере разрушения протекторов их заменяют новыми. [c.254]

    Магналии—сплав алюминия с магнием (5—13%), Используется в авиа- и машиностроении, в строительстве. Магналии стоек к коррозии в морской воде, поэтому его применяют в судостроении. [c.230]

    Морская вода содержит большое количество солей, главным образом хлориды, и имеет довольно высокую электропроводность. Эгим обстоятельством объясняется электрохимический характер коррозионных процессов в морской воде и пленке морской воды, образующейся на металлических конструкциях в воздухе. При наличии значительной концентрации хлорид-ионов и растворенного кислорода больишнство технически важных металлов (магний, алюминий и их сплавы, цинк, кадмий, коррозионностойкие и конструкционные стали могут переходить в состояние пробоя и подвергаться питтинговой коррозии. [c.42]

    Скорость коррозии в морской атмосфере в большой степени зависит от количества частиц соли и тумана, оседающих на поверхности металла. Осаждение соли зависит от направления и силы ветра и волн, высоты над уровнем моря, длительности и т. п. Поскольку соли морской воды (хлориды кальция и магния) гигроскопичны, то на поверхности металла может образоваться жидкая пленка. Солнечный свет может ускорять фоточувствительные коррозионные реакции па таких металлах, как железо и медь, а также стимулировать биологическую активность грибов и микроорганизмов. [c.29]

    Скорости коррозии при постоянном погружении в морскую воду были выше, чем при переменном погружении в зоне прилива, что согласуется с результатами других исследований. Наибольшее значение скорости коррозии 0,36 мкм/год при 10-летней экспозиции на среднем уровне прилива наблюдалось для сплава 5456-0, а наиболее высокое значение среди сплавов серии 5000 (алюминий — магний) было равно 1,3 мкм/год (сплав 5456-Н321). В условиях полного погружения наименьшая скорость коррозии 1,63 мкм/год. Для сравнения скорости коррозии чистого алюминия 1199 в зоне прилива и при постоянном погружении составили 0,91 и 1,55 мкм/год соответственно. Рост коррозионных потерь массы и глубины питтингов после 5 лет экспозиции происходил медленнее, чем в начальный период испытаний. Максимальная глубина питтинга обычно была по крайней мере вчетверо больше, чем средняя глубина 20 наибольших питтингов. Данные о максимальной глубине питтинга приведены в табл. 76. [c.188]

    По коррозионному поведению в морской воде металлы можно разделить на две основные группы, в зависимости от того, чем определяется скорость коррозии. Для первой группы главную роль играет реакция на катоде, а для второй определяющим фактором является наличие пассивной окисной пленки с очень хорошей адгезией к металлу. Сталь служит наилучшим примером металла, скорость коррозии которого в морской воде находится под катодным контролем. Хорошими примерами являются также цинк и магний. В качестве наиболее типичных [c.16]

    Подвергнутый перегонке высокочистый магний корродирует в морской воде со скоростью около 250 мкм/год, т. е. примерно вдвое быстрее лсе-леза. Скорости коррозии магния технической чистоты часто в сотни раз выше, в основном из-за наличия таких примесей, как железо. При этом [c.158]

    Проблема коррозии бетона в морской воде, в частности, связана с растворением в ней достаточного количества солей магния (15-18 % от объема растворенных солей). Основной магниевой солью в морской воде является сульфат магния, а идущую при контакте морской воды и бетона реакцию можно описать следующим уравнением  [c.104]

    Присутствие бикарбоната кальция в жесткой,воде часто обусловливает то, что сталь в нёГкорродирует медленнее, чем в воде среднед.шгко большая скорость коррозии в мягко воде обусловлена также и тем обстоятельством, что мягкая вода часто носит кислый характер. Присутствие кальция и магния в морской воде является одной из причин, благодаря которой морская вода вызывает меньшую коррозию, чем растворы хлористого натрия соответствующей концентрации (см. стр. 156). [c.93]

    Вообще говоря, в морской воде в качестве окислителя могут выступать ионы НзО или молекулы воды и растворенный кислород. Исследованию катодных процессов в хлоридсодержащих средах были посвящены работы Г. В. Акимова, Н. Д. Томашева, Г. Б. Кларк, И. Л. Розенфельда. Как показали исследования, коррозия магния и его сплавов протекает в основном за счет водородной деполяризации алюминий и его сплавы, коррозионностойкие и конструкционные стали, никель и никелевые сплавы, медь, медные сплавы подвергаются коррозии с кислородной деполяризацией. Растворимость кислорода в морской воде ограничена. При протекании коррозии с кислородной деполяризацией очень часто скорость катодного процесса определяется диффузией кислорода и поверхноети металла. В таких условиях перемешивание среды или перемещение поверхности металла относительно среды является важным фактором, который может оказать существенное влияние на характер коррозии. При перемешивании скорость катодного процесса будет уве-личиваться и металл из пассивного состояния может переходить в пробойное состояние (см. рис. 18). [c.43]

    ДОБАВЛЕНИЕ ЩЕЛОЧИ. Оптимальная щелочность котловой воды зависит отчасти от того, в каком количестве накапливаются в котле примеси при медленном просачивании охлаждающей воды в конденсаторе (обычно в местах крепления труб к трубным доскам). Степень просачивания зависит от конструкции и срока службы конденсаторной системы, и состав охлаждающей воды влияет, таким образом, на надежность работы котла. Например, хлорид магния, являющийся естественным компонентом морской воды, которая используется для охлаждения конденсаторов, гидролизуется до НС1 и вызывает кислотную коррозию котла. Периодическое добавление гидроксида натрия в котловую воду нейтрализует кислоту и предотвращает кислотную коррозию [43]. Если нейтрализующие добавки берут в количествах, общепринятых при обработке котловой воды, то применение NH4OH менее эффективно, чем смеси NaOH + ЫззР04. [c.290]

    Потенциал кадмия во многих средах близок потенциалу алюминия, поэтому кадмированные сталью винты, болты, детали и пр. можно применять в непосредственном контакте с алюминием. Считается, что можно с успехом использовать и оловянные покрытия. Цинк имеет несколько отличное значение потенциала, однако его также можно применять в большинстве случаев. В контакте с алюминием цинк является анодом и, следовательно, катодно защищает алюминий против инициации питтинга в нейтральных и слабокислых средах (см. разд. 12.1.6). Однако в щелочах происходит перемена полярности, и цинк ускоряет коррозию алюминия. Магний является анодом по отношению к алюминию, но при контакте этих металлов (например, в морской воде) возникает столь большая разность потенциалов и протекает столь большой ток, что алюминий может оказаться катодно переза-щищенным и вследствие этого будет разрушаться. Алюминий корродирует в меньшей степени, если он легирован магнием. Показано, что алюминий высокой чистоты может находиться в контакте с магнием без вреда для обоих металлов [24], поскольку в отсутствие примесей железа, меди и никеля, действующих как эффективные катоды, гальванический ток в этой паре невелик. [c.351]

    Существует очень много способов борьбы против коррозии. Широко используются электрохимические методы защиты стальных конструкций на морских нефтяных промыслах, например на знаменитых Нефтяных Камнях в Каспийском море. При этом используют так называемые протекторы, представляющие собой слитки сплава Mg и А1, т. е. металлов, еще более химически активных, чем железо. Протекторы навешивают на погруженные в морскую воду части стальных эстакад. В результате устансиления разности потенциалов между электродами — железным (эстакада) к магний-алюминиевым (протектор) — Mg и А растворяются, а на железном электроде выделяется молекулярный водород (ион Н+ из воды разряжается на более электропо-ложительггом металле). Например, для магния  [c.118]

    Изменение этих величин возможно за счет изменения состава сплава (очистка от примесей, вызывающих по каким-то причинам усиление коррозии, легирование). Уменьи1ение содержания углерода в коррозионностойких сталях приводит к уменьшению возможности выпадения карбидов хрома по границам зерен прн отжиге, что позволяет избежать межкристаллитной коррозии коррозионноотойких сталей [31 ]. Уменьшение концентрации примесей фосфора также приводит к снижению межкристаллитной коррозии коррозионностойких сталей [37]. Наличие примесей в техническом магнии и алюминии, повышающих скорость катодного процесса, приводит к тому, что указанные металлы в морской воде находятся в состоянии пробоя. Очистка металлов от примесей вызывает снижение скорости катодного процесса — магний и алюминий переходят в пассивное состояние [17]. [c.46]

    В некоторых случаях образование гальванических пар дает положительный эффект. Например, питтинговая и общая коррозия алюмн-нпевых сплавов уменьшается при их соединении с алюминиевыми пли цинковыми анодами. В испытаниях, проведенных ВМС США. использование алюминиевого (или цинкового) растворимого анода приводило к уменьшению средней глубины 5 наибольших питтингов на некоторых сплавах при 12-мес экспозиции в морской воде от 1.0 до 0,08 мм (табл. 57). Аноды нз магния применять не следует, так как более высокий потенциал приведет к перезащите и повышению pH среды около катода. В более щелочной среде амфотерный алюминий будет корродировать. [c.142]

    Согласно некоторым данным алюминиевые сплавы с высоким со-дерл<анием магния, такие как 5456 (5,25 % Mg), не обладают стойкостью в морской воде после некоторых режимов термообработки, при которых достигается максимальная прочность материала. Например, сплав 5456 в состоянии термообработки Н34 оказался склонным к рас-слапванпю, образованию кратероподобных питтингов п сильной обшей коррозии. Если термообработка сопровождается образованием на гра- [c.147]

    Фосфаты, силикаты и бензоаты щелочных металлов являются анодными пассиваторами. Так, КазР04 образует на анодных участках стали фосфат железа, который ингибирует коррозию стали, погруженной в водный раствор хлорида натрия. Катионы пассиватора могут образовывать нерастворимый гидроксид на катодных участках корродирующего металла. Если погрузить стальную пластину в морскую воду, содержащую хлорид магния, то на катодных участках поверхности образуется пленка Mg(0H)2, т. е. хлорид магния служит катодным ингибитором коррозии стали в растворе хлорида натрия. Некоторые вещества обладают одновременно анодным и катодным действием. К ним относятся атмосферные пассиваторы, например Са(НСОз)2. Ион НСОз образует карбонат железа(П) на анодных участках, а ион Са — пленку Са(ОН)2 на катодных участках. [c.134]


Смотреть страницы где упоминается термин Магний, коррозия в морской воде: [c.159]    [c.425]    [c.478]    [c.15]    [c.481]    [c.28]    [c.40]    [c.159]    [c.136]   
Коррозия металлов Книга 1,2 (1952) -- [ c.431 ]

Коррозия металлов Книга 2 (1952) -- [ c.431 ]




ПОИСК





Смотрите так же термины и статьи:

Морская вода

Сплавы магния коррозия в морской воде



© 2025 chem21.info Реклама на сайте