Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генетические болезни генетические

    Биологические исследования показали, что гелиевая атмосфера не влияет на генетический аппарат человека, не действуя на развитие клеток и частоту мутаций. Дыхание гелиевым воздухом (воздух, в котором азот частично или полностью заменен на гелий) усиливает обмен кислорода в легких, предотвращает азотную эмболию (кессонную болезнь). [c.228]

    Многие генетические болезни очень редки и встречаются не чаще чем у одного человека из 10 000, но некоторые, например кистозный фиброз, поражают одного из 2500. Общее число страдающих наследственными болезнями превышает, как полагают, 2% от числа рождающихся. Многие из них погибают в младенчестве. Еще большее число людей (более 5%) страдает от диабета и психических заболеваний, также отчасти генетически обусловленных. Поскольку появление новых мутаций — непрекращающийся процесс, генетические заболевания представляют все более и более злободневную проблему. [c.40]


    Фенилкетонурия может служить примером довольно часто встречающейся генетической болезни, которую легко распознать и которая поддается лечению. Если выявить это патологическое состояние сразу же после рождения ребенка и в течение первых 6 лет его жизни очень строго соблюдать определенную диету, то он вырастет нормальным [c.581]

    Всего страшнее те генетические болезни, которые мы не в состоянии предсказать на основе проверки будущих родителей, не можем выявить достаточно рано или пока еще совершенно не умеем лечить. Жертвы таких болезней требуют ухода, затраты на который обычно не под силу частным лицам, так что обществу приходится брать на себя заботу об этих людях. Если бы даже биохимики и могли для каждой генетической болезни указать причину в виде дефектной структуры гена, то все равно одной биологии недостаточно для решения тех социальных и этических проблем, которые порождаются этими болезнями. [c.582]

    Существуют генетические болезни, при которых обмен гликогена нарушен [c.616]

    Приведенные примеры иллюстрируют огромные возможности технологии рекомбинантных ДНК в крупномасштабном синтезе ценных белковых материалов, которые было бы сложно или слишком дорого производить другими способами. Достигнутые успехи являются результатом объединенных усилий химиков, биологов и других ученых и служат наглядным примером полезной взаимосвязи разных дисциплин. Возможности технологии, базирующейся на рекомбинантной ДНК, однако, лишь только приоткрываются. Химически приготовленные последовательности ДНК могут использоваться для выявления генетических дефектов, возможно, свидетельствующих о специфической чувствительности к заболеванию. Можно даже предвидеть, что генетические болезни будут корректироваться путем замещения дефектных генов или введения генов, полученных методом генной инженерии. Не исключено, что самым важным вкладом технологии рекомбинантных ДНК станет расширение наших знаний о регуляции генов в клетке. [c.120]

    Вирусы, патогенные для животных и человека. У людей и животных вирусы вызывают такие болезни, как оспа, ветрянка корь, бешенство, полиомиелит (детский паралич), гриппозные инфекции, насморк, ящур и т.п. Так же как и вирусы растений, они передаются либо при контакте, либо через насекомых и попадают в клетки, по-видимому, в результате фагоцитоза или пиноцитоза. В лабораторных исследованиях для размножения вирусов приходится использовать подопытных животных или куриных эмбрионов. Некоторые вирусы животных удается выращивать и количественно определять на тканевых культурах. Генетическим материалом этих вирусов может быть либо ДНК, либо РНК. В то время как ДНК почти всегда представлена двойной спиралью, вирусная РНК состоит из одной полинуклеотидной цепи. [c.135]


    До недавних пор генетические болезни считались неизлечимыми, однако в настоящее время ситуация меняется лечение некоторых наследственных патологий становится возможным эту тему мы обсудим в разд. 25.7.11. По мере накопления знаний о наследственных болезнях человека увеличивается потребность в консультировании. Специалисты-генетики дол- [c.242]

    Методы переноса генов потенциально приложимы к лечению наследственных аномалий человека. Например, ген, кодирующий нормальный гемоглобин, мог бы быть передан человеку, страдающему серповидноклеточной анемией, болезнью, вызванной присутствием аномальной (3-глобиновой цепи. Если нормальный (З-глобиновый ген будет введен в стволовые клетки, которые дают начало эритроцитам, то последние смогут синтезировать нормальный гемоглобин. Таким образом, индивидуум будет вылечен . Устранение генетических дефектов генома с помощью трансфекции нормальными генами представляется делом отдаленного будущего. Одна из основных трудностей - это низкая эффективность трансфекции. Даже в наиболее удачных случаях доля трансформированных клеток очень мала. Более того, пока трансфекция проводится с культурами клеток, а не с целыми тканями живых организмов, что потребуется для исправления генетических дефектов. [c.321]

    У человека известен ряд генетических болезней, связанных с нарушением синтеза или распада гликогена. Одним из первых был описан случай хронического увеличения печени-у 8-летней девочки, у которой наблюдались также различного рода нарушения обмена. Девочка умерла от гриппа. Вскрытие показало, что ее печень была в 3 раза больше нормы в ней содержалось огромное количество гликогена на долю его приходилось почти 40% сухого веса органа. Выделенный из печени гликоген в химическом отношении оказался вполне нормальным, однако, когда кусочек ткани печени гомогенизировали и инкубировали в буфере, этот гликоген так и остался интактным-ни лактат, ни глюкоза не образовались. Когда же к гликогену добавили суспензию, приготовленную из ткани нормальной печени, то очень быстро произошло его расщепление до глюкозы. На основании этой биохимической проверки исследователи пришли к выводу, что у больной был нарушен процесс расщепления гликогена (эту болезнь часто называют болезнью Гирке по имени описавшего ее врача). Сначала предполагалось, что дефектным ферментом была в этом случае глюкозо-6-фос-фатаза, поскольку больная печень не образовывала глюкозы однако отсутствие образования лактата указывало на то, что дефект затрагивал либо гликоген-фосфорилазу, либо дебранчинг-фермент [а(1 - 6)-глюкозидазу]. Позже исследователи укрепились в мнении, что в этом классическом случае была затронута именно а(1 - 6)-глюкозидаза. Вследствие этого в молекулах гликогена, находящихся в печени, могли расщепляться с образованием глюкозы или [c.616]

    Опишите вероятный механизм действия больших количеств витамина пи-ридоксина, применяемого при лечении генетической болезни цистатионину-рии. [c.427]

    В 1902 г. английский врач А. Е. Гаррод (1857—1936) исследовал вольных, у которых моча темнела при стоянии на воздухе, и обнаружил, что изменение цвета вызвано присутствием в моче гомогентизино-вой кислоты, или 2,5-диоксифенилуксусной кислоты. Он описал это явление как врожденную ошибку обмена веществ . Позднее было установлено, что это результат генетической мутации фермент, который превращает гомогентизиновую кислоту в теле здорового человека в другие вещества, у больных или не синтезируется совсем или, возможно, синтезируется в измененной форме, не обладающей каталитической активностью. В 1949 г. была открыта причина другой генетической болезни— серповидноклеточной анемии, которая обусловлена присутствием в организме мутантного гена, детерминирующего синтез аномальной полипептидной цепи гемоглобина. В -цепи молекулы гемоглобина у больных серповидноклеточной анемией происходит замена одного аминокислотного остатка глутаминовой кислоты на валин, что уже было описано в разд. 15.6. Поскольку появление аномальных молекул гемоглобина влечет за собой болезнь, серповидноклеточная анемия была названа молекулярной болезнью. С 1949 г. обнаружены сотни молекулярных болезней. Для многих из них установлена природа генной мутации и соответствующее изменение в структуре молекулы белка, зависимого от мутировавшего гена. Для ряда таких болезней обнаружение нарушения на молекулярном уровне позволило практически полностью объяснить симптомы заболевания. [c.467]

    Генетические болезни метилмалоновая ациду-)ия, т. 2, стр. 335 [c.379]

    Генетические болезни метилмалоновая ацидурия [c.335]

    Трансгенные мыщи могут служить модельными системами для изучения болезней человека и тест-системами для исследования возможности синтеза продуктов, представляющих интерес для медицины. Используя целых животных, можно моделировать и возникновение патологии, и ее развитие. Однако мышь - не человек, хотя она тоже относится к классу млекопитающих, поэтому данные, полученные на трансгенных моделях, не всегда можно экстраполировать на человека в том, что касается медицинских аспектов. Тем не менее в некоторых случаях они позволяют выявить ключевые моменты этиологии сложной болезни. Принимая во внимание все это, ученые разработали мышиные модели таких генетических болезней человека, как болезнь Альцгей- [c.430]


    Муковисцидоз - распространенная генетическая болезнь, поражающая в странах Европы одного из 2500 новорожденных. Первичный эффект дефектного СР-гена - это изменение функции СРТК, который в норме служит каналом для ионов хлора. В результате блокирования потока этих ионов в клетку и из клетки в протоках некоторых органов, особенно в легких и поджелудочной железе, скапливается слизь. Она становится источником бактериальной инфек- [c.432]

    Серповидноклеточная анемия-это генетическая болезнь, при которой больной наследует мутантные гены от обоих родителей. В тех случаях, когда мутантный ген унаследован только от одного из родителей, его обладатель становится носителем признака серповиднокле-точности без явных патологических симптомов. При такой форме серповид-ноклеточности (ею поражено примерно 8% негритянского населения Соединенных Штатов) серповидные эритроциты составляют всего около 1 % их общего числа. Люди со скрытой формой серповидноклеточности могут вести вполне нормальный образ жизни, но дол- [c.216]

    Известно много генетических болезней человека, при которых тот или иной фермент либо совсем неактивен, либо имеет какой-то дефект, затрагивающий его каталитическую или регуляторную функцию. При таких заболеваниях в полипептидных цепях дефектного фермента содержится одна или большее число неправильных аминокислот, появившихся в результате мутации участков ДНК, кодирующей этот фермент. Каталитическая активность фермента зависит не только от наличия определенных аминокислотных остатков в каталитическом и регуляторном центрах, но и от общей трехмерной структуры фермента. Поэтому замена одного аминокислотного остатка в каком-либо важном месте цепи может привести к изменению или даже к полной утрате каталитической активно сти фермента, подобно тому как замена всего лишь одного аминокислотного остатка в молекуле гемоглобина вьпы-вает появление серповидноклеточного гемоглобина с нарушенной функцией (разд. 8.18). Если генетически измененный фермент входит в состав ферментной системы, катализирующей ка-кой-нибудь центральный метаболический путь, то последствия такого изменения могут быть очень тяжелыми, вплоть до летальных нарушений метаболизма. [c.266]

    При некоторых генетических заболеваниях проверка будущих родителей позволяет выявить носителей дефектных генов. Такая проверка не гарантирует от ошибок, и в большинстве случаев ее проводят на добровольной основе. Удается, например, выявить носителей серповид-ноклеточной анемии (разд. 8.17) или болезни Тея-Сакса (гл. 21). К сожалению, для многих других генетических болезней сделать это невозможно. В некоторых случаях метод амниоцентеза позволяет обнаружить ту или иную патологию еще у плода. Так может быть выявлена, в частности, болезнь Тея-Сакса (гл. 21). Правда, для ряда генетических болезней, выявляемых методом амниоцентеза, единственным возможным лечением является аборт, а это ставит людей перед трудным выбором. [c.582]

    Кольцевая система пуринов, входящих в состав пуриновых нуклеотидов, строится поэтапно на 1-м углеродном атоме 5-фосфорибозиламина. Все атомы азота, содержащиеся в пуринах, поступают от аминокислот. После двух этапов, на каждом из которых происходит замыкание кольца, возникает пуриновое ядро. Пиримидины синтезируются из аспарагиновой кислоты, СОз и аммиака. Присоединение к ним рибозо-5-фосфата приводит к образованию пиримидиновых рибонуклеотидов. Образующиеся при распаде нуклеотидов свободные пурины сохраняются и вновь используются для синтеза нуклеотидов. Для такой их реутилизации существует особый путь. Ге-нетически обусловленный дефект в одном из ферментов этого пути вызывает болезнь, сопровождающуюся весьма необычными симптомами она называется болезнью Леша-Нихана. Другая генетическая болезнь, подагра, приводит к отложению кристаллов мочевой кислоты в суставах. [c.678]

    Мутации в реальной жизни индивидуального организма-события весьма редкие. Вероятность того, что в течение жизни одной клетки Е. oli произойдет мутация, составляет 10 Для клетки человека такая вероятность выше-порядка 10 эта величина была рассчитана, исходя из частоты встречаемости гемофи-лмм-генетической болезни, в основе которой лежит нарущение механизма свертывания крови, приводящее к длительным кровотечениям. Гемофилия была одним из первых наследственных заболеваний человека, природу которого удалось понять. Классический пример этого заболевания представляет собой гемофилия в семье английской королевы Виктории. Она была прослежена в трех поколениях ее потомков, принадлежащих к королевским семьям Англии, Пруссии, Испании, Греции и России. У человека наряду с молчащими , безвредными или благоприятными мутациями, не вызывающими осложнений, возможны мутации, приводящие к генетически наследуемым расстройствам, которые проявляются в нарушениях нормальных функций организма. К настоящему времени у человека найдены мутации примерно в 2500 различных генах многие из них либо ухудшают те или иные функции, либо приводят в конечном счете к летальному исходу. Остальные гены человека, подверженные мутациям, предстоит обнаружить. Очевидно, число выявленных наследственных заболеваний человека будет возрастать по мере появления методов, способных регистрировать последствия мутаций. Наследственные болезни ставят перед биохимией и медициной исключительно важную задачу по их распознаванию и лечению. [c.972]

    Устойчивость растения к болезням определяется его свойствами, особенностями живой клетки активно сопротивляться паразиту. Большую роль в устойчивости растений играют врожденные (генетические) свойства растения, а также свойства, возникшие в ответ на внедрение паразита, — его защитная реакция. Например, у устойчивых растений могут образоваться токсические вещества, вызывающие гибель проникшего в ткань паразита. В иных случаях в качестве защитной реакции растение образует слой опробковев-ших клеток вокруг пораженной ткани, что препятствует дальнейшему распространению паразита в некоторых случаях растение реагирует на внедрение патогена выделением химически активных веществ, тормозящих (инактивирующих) развитие болезни, — образует так называемый химический барьер. Эти вещества получили название фитоалексинов. Внедрившись в растение, возбудитель нарушает нормальную жизнедеятельность растения, в ответ на это растение образует фитоалексин. [c.48]

    Нельзя не согласиться с автором и тогда, когда он подчеркивает неправильность мнения ряда биологов и медиков о том, что с так называемыми наследственными болезнями невозможно бороться. На многочисленных примерах автор показывает, что эти наследственные заболевания лишь отражают тот факт, что данный организм в связи с какими-то генетическими особенностями предъявляет к окружающей среде повышенные требования в отношении некоторых факторов и что в тех случаях, когда эти повышенные требования могут быть удовлетворены, болезнь либо совершенно не проявляется, либо проявляется только в слабой степени и не ведет к тяжелым поражениям или гибели организма. В этом направлении несомненный интерес представляет выдвигаемый автором генетотрофный принцип . Согласно этому принципу, многие наследственные заболевания связаны с тем, что данный организм, в отличие от других организмов того же вида, полностью или частично лишен способности образовывать какой-то из необходимых для его нормальной жизнедеятельности факторов и вследствие этого нуждается в поступлении этого фактора извне. Если поступление этого фактора в достаточном количестве может быть обеспечено соответствующим подбором пищевого режима, то можно надеяться на полное исчезновение всех проявлений болезни. Исходя из этого принципа, автор считает, что при изучении болезней, этиология которых еще не установлена, главной задачей медицины является установление природы этого недостающего фактора с тем, чтобы в дальнейшем снабдить им больной организм. Индивидуальный пищевой режим, основанный на тщательном исследовании процессов обмена у данного больного, должен, таким образом, по мнению автора, стать основой терапии многих как наследственных, так и ненаследственных заболеваний. Это положение автор иллюстрирует многими при- мерами необходимо, однако, отметить, что, стремясь доказать универсальность выдвинутого им генетотрофного принципа, автор часто чрезмерно упрощает действительное положение вещей и сбрасывает со счетов другие [c.7]

    Полиморфизм длины фрагментов рестрикции. Если имеется подходящий ДНК-зонд, то можно обнаружить прямым методом некоторые генетические болезни, возникающие вследствие мутаций (гемофилия, мыщечная дистрофия и др.). Ответственный за болезнь, но неидентифицированный ген может быть обнаружен, если он находится вблизи последовательности ДНК, поддающейся определению. Во всем человеческом геноме примерно одно из 150 оснований является полиморфным, т. е. варьируется у разных индивидуумов. Каждое щестое из этих случайных изменений или порождает, или разрушает участок рестрикции. В результате этого потенциальные участки рестрикции присутствуют вдоль молекулы ДНК с интервалом примерно в 1000 пар оснований. Их наличие или отсутствие у разных людей приводит к тому, что ДНК в процессе рестрикции разрезается на фрагменты разной длины (полиморфизм длины рестрикционных фрагментов). Если при обследовании членов семьи обнаруживается взаимосвязь между полиморфизмом длины рестрикционных фрагментов и наследственным заболеванием, делается заключение, что данный участок рестрикции расположен вблизи от гена, ответственного за патологию. В таком случае присутствие данного типа полиморфизма можно использовать для предсказания наличия мутантного гена у другого члена семьи или в ткани плода. Однако использование этой техники для пренатальной диагностики требует предварительного обследования семьи. [c.528]

    Появившиеся в последнее время методы позволяют составлять подробные карты очень больших геномов. Есть две категории карт 1. Физические карты, основывающиеся на строении молекул ДНК, составляющих каждую хромосому. Сюда относятся рестрикционные карты и систематизированные библиотеки клонов геномной ДНК. 2. Карты генетического сцепления их строят, основываясь на частоте совместной передачи потомству двух или нескольких признаков - генетических маркеров, различных у отца и матери и приписываемых определенному участку хромосомы. В качестве маркеров издавна принято использовать те гены, экспрессия которых обнаруживается по их эффекту (таковы, в частности, гены, вызывающие генетические болезни, например мышечную дистрофию). Разработанные сравнительно недавно новые методы с применением рекомбинантной ДНК дали возможность использовать в качестве генетических маркеров короткие последовательности ДНК, содержащие один из сайтов рестрикции и различающиеся у отдельных индивидуумов, такие последовательности особенно удобны для генетического картирования, потому что под действием рестрикционной нуклеазы возникают фрагменты, различающиеся по своей длине, и этот полиморфизм длины рестрикционных фрагментов (ПДРФ) легко может быть выявлен блот-анализом по Саузерну с помощью подходящего ДНК-зонда (рис. 5-90). [c.342]

    Оставляя в стороне житейские сложности героев романа, остановимся на некоторых фактах, интересных с генетической точки зрения. Джолион IV имел резус-положительный фактор. В первом браке с Франсис, имевшей резус-отрицательный фактор, у него родилась дочь, которая вскоре умерла. У нее был резус-отрицательный фактор и страдала болезнью Вильсона. Во втором браке с резус-положительной Геленой родились резус-иоложительная дочь с болезнью Вильсона и резус-отрицательный сын, страдавший болезнью Вильсона и болезнью Ослера одновременно. В третьем браке с резус-отрицательной Ирен рождается здоровый сын с резус-отрицательным фактором. [c.83]

    Новый принцип генетического анализа. Обнаружение мультигенных семейств мышечных белков дало в руки исследователей новый принцип генетического анализа. До недавнего времени анализ генов начинался с выявления генетической изменчивости. Ее можно констатировать на фенотипическом уровне, например благодаря наличию наследственной болезни, или на некотором промежуточном уровне-по отсутствию функционального белка, по электрофоретическим вариантам белка или по разным антигенным детерминантам на клеточной поверхности. Фенотипическую изменчивость затем связывали с соответствующим полиморфизмом на генном уровне. Генетические варианты часто служат экспериментальным инструментом для раскрытия основных механизмов действия гена. Однако для семейства актиновых или миозиновых генов неизвестны ни нормальные, ни патологические генетические варианты. Генетический анализ начинается с белка и генов как таковых безотносительно к межиндивидуальным различиям. Это стало возможным благодаря тому, что теперь в распоряжении исследователей имеется, если нужно, большое количество матричной РНК для этих белков. В настоящее время перед медицинскими генетиками стоит задача выявить наследственные заболевания, которые могут быть вызваны генетическими изменениями актиновых или миозиновых генов. Возможно, однако (хотя и вряд ли), что такие болезни просто не существуют-либо потому что любой генетический дефект актина или миозина ле-тален, либо потому что экспрессия гена в мультигенном семействе настолько эластична , что мутации в одном локусе компенсируются активностью других локусов. [c.139]

    На первый взгляд может показаться, что при современных биологических методах дискриминация клинико-генетических вариантов на чисто описательной основе, т. е. на уровне клинического фенотипа, уже не представляет интереса. Однако, по нашему мнению, значение фенотипической вариабильности генетических болезней у человека необходимо по многим причинам  [c.186]

    Анемия Фанкони (22765). Анемия Фанкони-это детская панмиелопатия, сопряженная с дефицитом костного мозга, приводящим к панцитопении. Больные, как правило, имеют скелетные аномалии, главным образом большого пальца и лучевой кости, и характеризуются гиперпигментацией часто у них обнаруживают другие пороки развития. Заболевание наследуется по аутосомно-рецессивному типу. Анализ возрастов начала болезни привел к предположению о ее генетической гетерогенности [1638]. Это предположение впоследствии подтвердилось. Было показано, что при слиянии клеток больных с различными клиническими формами патологии происходит взаимная коррекция хромосомной нестабильности [1707]. Существует более распространенная форма, при которой начало болезни приходится на первые годы жизни, и более редкая, когда заболевание возникает в подростковом возрасте. Изучение комплементации между больными, имеющими различные особенности системы репарации [1706] или различное этническое происхождение [1708], не выявило дополнительной генетической гетерогенности. Недавно в ходе исследований клеточной гибридизации были идентифицированы по крайней мере две различные формы этого заболевания. [c.198]

    Количество генетических болезней в популяции неизвестно. Многим читателям может показаться удивительным, что определение частоты наследственных болезней в человеческих популяциях никогда не производилось. Были предприняты две серьезные попытки выявления всех случаев наследственных заболеваний в хорошо изученных популяциях Северной Ирландии [1649] и Британской Колумбии (Канада) [1661]. Полученные данные использованы экспертами ООН в качестве основы для оценок риска. Однако критическое изучение таблиц, опубликованных в этих работах, показывает, что авторы не провели персональных обследований и генетической классификации больных, а вынуждены были полагаться на диагнозы, поставленные большим числом практикующих врачей, и иногда даже на их заключения относительно способов наследования. Диагнозы редких болезней часто бывают ошибочными, что вносит путаницу в классификацию многих наследственных болезней и не позволяет судить об их генетической и средовой гетерогенности. Для этого необходимо проведение обширных клинических и лабораторных исследований. Между гем диагностическая практика, принятая в медицине, часто не требует (и не должна требовать) детального анализа (см. разд. 3.8.14). Для генетиков-клиницист ов несостоятельность этих сообщений очевидна. Почему же доклады ООН в значительной с1спени ос- [c.255]

    Психотропные вещества [2169]. Психофармакологические препараты могут оказывать влияние на симптомы аффективных расстройств и психических заболеваний. Это обстоятельство стимулирует исследование механизмов психических болезней. Было обнаружено, что указанные вещества влияют на медиаторную функцию в синапсах, особенно на функцию норадреналина. Отмечалось, например, что одни больные депрессией лучше реагируют на ингибиторы моноаминоксидазы (МАО), а другие-на трициклические антидепрессанты типа имипрамина. Более того, родственники пробанда, которые страдали депрессией, положительно реагировали на то же самое вещество, что и сам пробанд. Эта семейная тенденция отвечать на вещества преимущественно одного класса говорит о наличии генетической детерминированности. Оба соединения оказьшают влияние на функцию норадреналина в адренергических синапсах  [c.123]


Смотреть страницы где упоминается термин Генетические болезни генетические: [c.419]    [c.439]    [c.54]    [c.544]    [c.121]    [c.105]    [c.430]    [c.466]    [c.165]    [c.164]    [c.255]   
Биология Том3 Изд3 (2004) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Болезни



© 2025 chem21.info Реклама на сайте