Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеотиды распад

    Помимо метаболических путей синтеза и распада аминокислот, нуклеотидов и других азотистых веществ у многих организмов имеется специализированный метаболизм включения избыточного азота в сравнительно малотоксичные продукты экскреции. Все эти стороны метаболизма азота будут рассматриваться в этой главе, но из-за исключительной сложности предмета изложение будет сжатым. Сначала мы рассмотрим реакции, с помощью которых из неорганических соединений образуются органические азотистые соединения, а затем обратимся к реакциям, затрагивающим азотный фонд. Далее мы рассмотрим специфические реакции синтеза и катаболизма индивидуальных азотистых соединений. [c.81]


    Общее строение нуклеиновых кислот строго доказано. При гидролизе нуклеиновые кислоты распадаются на соответствующие нуклеотиды. Место связи рибозы с фосфорной кислотой установлено с помощью избирательного гидролиза. При этом в зависимости от природы фермента получают нуклеозид-5 -монофосфат, или нуклеозид-3, 5 -ди-фосфат, или нуклеозид-З -монофосфат, откуда следует, что остатки рибозы связаны в нуклеиновых кислотах фосфорной кислотой в положении 3,5. Природа оснований установлена путем их идентификации в продуктах гидролиза нуклеотидов. Наконец, нуклеиновые кислоты титруются как одноосновные кислоты. Это указывает на то, что две гидроксильные группы фосфорной кислоты связаны с двумя остатками рибозы. [c.361]

    Последовательность реакций распада нуклеотидов пуринового ряда на примере деградации аденозин-5 -монофосфата представлена на следующей схеме  [c.425]

    В организмах, гидролизующих мочевую кислоту до мочевины или аммиака, этот путь используется только для разрушения пуринов, образующихся при распаде нуклеотидов. Избыток азота, возникающий при катаболизме аминокислот, экскретируется либо непосредственно в виде аммиака, либо превращаясь в мочевину (разд. В, 2). [c.170]

    Распад нуклеотидов в тканях. В результате действия внутриклеточных эндо- и экзонуклеаз нуклеиновые кислоты расщепляются до мононуклеотидов, которые под действием 3 - или 5 -нуклеотидаз гидролитически распадаются до нуклеозида и ортофосфорной кислоты. Известно, что АМФ в живот- [c.424]

    РАСПАД НУКЛЕОТИДОВ Распад пуриновых нуклеотидов [c.51]

    Таким образом, для того, чтобы процесс распада органического вещества в живой клетке был наиболее энергетически выгодным, необходимо образование в ходе процесса максимально возможного количества молекул АТФ или восстановленных пиридиновых нуклеотидов. Известные нам процессы распада углеводов, несомненно, являются результатом биохимической эволюции — естественного отбора по эффективности использования энергии для жизненных процессов. Это и определяет высокую энергетическую целесообразность процессов распада углеводов. [c.364]

    Уреаза катализирует реакцию гидролиза мочевины до аммиака, а ката-лаза — распад Н2О2 до Ы2О + О2. (Обширный обзор по дыхательным ферментам см. в [99].) В ряде случаев в системе необходимо наличие так называемых коферментов, которые обычно имеют меньший молекулярный вес, чем фермент. Функцию коферментов могут нести витамины и простые нуклеотиды, такие, как адонозинтрифосфат (АТФ). [c.561]


    Молекулярная масса РНК колеблется от 25 000 до 1 000 000. В отличие от ДНК РНК нестойки не только к кислоте, но и к щелочи, под действием которой они распадаются на нуклеотиды. Нестойкость РНК к щелочи обусловлена наличием у второго углеродного атома рибозы гидроксильной группы, что приводит к лабилизации сложноэфирной связи рибозы с фосфорной кислотой. Макромолекулярная структура РНК менее изучена, чем ДНК. Макромолекулы РНК линейны, расщепление молекулярной цепи хотя бы в одном месте приводит к потере биологической активности. Для некоторых видов РНК также характерны определенные соотношения оснований  [c.364]

    Делеция - распад азотистых оснований и выпадение соответствующих нуклеотидов. Выпадение может быть вызвано гидролитическим отщеплением пуринового основания или же его распадом под влиянием pH, температуры, дезаминирующих или окисляющих агентов. [c.53]

    Последовательность ферментативных превращений пиримидиновых нуклеотидов приведена на примере распада цитидин-5 -монофосфата  [c.425]

    Выполнив свою функцию шаблона и отштамповав нужное число белковых молекул, молекула и-РНК распадается на свободные нуклеотиды, которые поступают в общий фонд клетки. Взамен их появляются новые молекулы и-РНК, которые используются в качестве шаблонов для сборки других белков. Этот постоянно протекающий в клетках процесс обеспечивает наработку необходимых для организма белков в соответствии с содержащейся в молекулах ДНК информацией, полученной ими по наследству от материнских клеток. [c.455]

    Распад пиримидиновых нуклеотидов, [c.441]

    В эукариотических клетках в процессе окислительного распада питательных веществ образуются восстановительные нуклеотиды, главным образом ЫАОН. Для их окисления молекулярным кислородом используется митохондриальная электронтранспортная система (рис. 10.11,Л). Это термодинамически выгодный процесс, поскольку окислительно-восстановительный [c.342]

    Известен другой путь — путь реутилизации пуриновых оснований, образовавшихся в процессе распада эндогенных или экзогенных пуриновых нуклеотидов. По-видимому, эти реакции следует рассматривать как реакции сбережения , использующие пуриновые кольца до их превращения в ксантин и затем в мочевую кислоту перед экскрецией. [c.435]

    Развитие ферментативных процессов при созревании мяса приводит к накоплению в нем веществ, влияющих на вкус и аромат готовых мясных продуктов. Этими соединениями являются продукты распада и пептидов (глютаминовая кислота, треонин, серосодержащие аминокислоты и др.), нуклеотидов (инозинмонофосфорная кислота, инозин, гипоксантин, рибоза), углеводов (глюкоза, фруктоза, молочная, пировиноградная кислоты), липидов (низкомолекулярные жирные кислоты), а также креатин и другие азотистые экстрактивные вещества. Среди летучих компонентов, определяющих аромат продуктов из созревшего мяса, обнаружены жирные кислоты, карбонильные соединения, спирты, эфиры. Существенную роль в формировании запаха играют серосодержащие соединения, предшественниками которых являются цистеин, цистин и метионин. На вкус и аромат мясопродуктов значительно влияют сахароаминные реакции или реакции неферментативного потемнения при тепловой обработке мяса, в которых участвуют редуцирующие сахара, аминокислоты или белки, а также альдегиды, возникающие в результате превращения жирных кислот. [c.1131]

    Материал предыдущего раздела показывает, что моносахариды должны быть необходимым компонентом пищи для многих живых организмов, так как именно в результате расщепления моносахаридов организм получает энергию, необходимую для жизненных процессов. Суще-ствуют, однако, две большие группы живых организмов, которые могут расти и развиваться, используя в качестве единственного источника углерода углекислый газ. Все органические вещества, и прежде всего моносахариды, образуются в этих организмах путем частичного восстановления двуокиси углерода и последующих реакций конденсации, приводящих к образованию углерод-углеродных связей. Зтот процесс требует участия восстановленных пиридиновых нуклеотидов и АТФ, при распаде которого выделяется энергия, необходимая для реакций конденсации. [c.379]

    Нуклеиновые кислоты составляют существенную небелковую часть сложного класса органических веществ, получивших название нуклеопротеинов (см. главу 2) последние являются основой наследственного аппарата клетки хромосом. Белковые компоненты нуклеопротеинов подвергаются многообразным превращениям, аналогичным метаболизму белков и продуктов их распада—аминокислот, подробно рассмотренному в главе 12. О нуклеиновых кислотах, их структуре и функциях в живых организмах в последнее время накоплен огромный фактический материал, подробно рассмотренный в ряде специальных руководств и монографий. Помимо уникальной роли нуклеиновых кислот в хранении и реализации наследственной информации, промежуточные продукты их обмена, в частности MOHO-, ди- и трифосфатнуклеозиды, выполняют важные регуляторные функции, контролируя биоэнергетику клетки и скорость метаболических процессов. В то же время нуклеиновые кислоты не являются незаменимыми пищевыми факторами и не играют существенной роли в качестве энергетического материала. Далее детально рассматриваются (помимо краткого изложения вопросов переваривания) проблемы метаболизма нуклеиновых кислот и их производных, в частности пути биосинтеза и распада пуриновых и пиримидиновых нуклеотидов, современные представления о биогенезе ДНК и РНК и их роли в синтезе белка. [c.469]


    Распад пуриновых нуклеотидов в клетке и выведение из организма. [c.441]

    Следующая стадия, инициация, требует наличия субстратов РНК-полимеразы, нуклеозидтрифосфатов и заключается в образовании первых нескольких звеньев цепи РНК- Первый нуклеотид входит в состав цепи, сохраняя свою трифосфатную группу, а последующие присоединяются к 3 -ОН-группе предыдущего с освобождением пиро юсфата. На стадии инициацни РНК-продукт связан с матрицей и РНК-полн.меразой непрочно и с высокой вероятностью может освобождаться из комплекса. В этом случае РНК-полимераза, не покидая промотора, снова инициирует РНК- Такой синтез ДИ-, три- и более длинных олигонуклеотидов называют абортивной инициацией в противоположность продуктивной (т.е. завершающейся образованием полноценного РНК-продукта) инициации. Когда РНК-продукт достигает критической длины (от 3 до 9 нуклеотидов на разных промоторах), абортивная инициация полностью прекращается, транскрибирующий комплекс стабилизируется и уже не распадается до тех пор, пока синтез. молекулы РНК не будет доведен до конца. Примерно в этот же мо.мент, который считается концом инициации и началом элонгации, ог РНК-полимеразы отделяется а-субъединица. [c.138]

    При длительном хранении сырья в нем начинают преобладать процессы распада. Особенно сложен обмен углеводов в клубнях картофеля. Синтез и гидролиз крахмала в них осуществляются не амилазами, а фосфорилазами (гликозилтрансферазами), обладающими способностью переносить гликозил (остаток моносахарида, не содержащего гликозидного кислорода) на фосфорную кислоту с образованием глюкозо-1-фосфата. Реакция фосфоролиза обратима. Взаимные превращения углеводов протекают при участии нуклеотидов, в частности аденозин- и уридинфосфатов, и многочисленных [c.44]

    Нуклеиновые кислоты — углеводы. При распаде углеводов образуется рибозо-5-фосфат, совершенно незаменимое соединение для биосинтеза пуриновых и пиримидиновых нуклеотидов. Составные части пуриновых и пиримидиновых нуклеотидов — ,П-рибоза и дезоксирибоза — поступают в нуклеиновые кислоты за счет распадающихся углеводов. [c.458]

    Почти все органические соединения, перечисленные в предыдущем разделе, состоят из молекул, количество атомов в которых чаще всего не превышает пятидесяти эти атомы с трудом распадаются в условиях умеренной химической обработки. Однако существуют органические соединения с поистине гигантскими молекулами, построенными из тысяч и даже миллионов атомов. Эти молекулы состоят из сравнительно небольших строительн ых блоков Такие гигантские молекулы легко разложить на образующие их блоки, которые можно исследовать. Так, например, поступил Левин, изучая нуклеотиды (см, предыдущий раздел). Предпринимались также попытки изучать эти гигантские молекулы как таковые, не разрушая их предварительно. Первые шаги в этом направлении предпринял шотландский химик Томас Грэхем (1805— [c.127]

    Говоря о нуклеотидах, нельзя не упомянуть также и о том, что в самое последнее время мононуклеотиды и очень близкие к ним соединения выделены, как таковые, из различных природных объектов. Биологическая роль таких нуклеотидов далеко не всегда известна. Они являются продуктами обмена, возникающими, по-видимому, по крайней мере в некоторых случаях как результат распада нуклеиновьгх кислот. Не исключено также, что они могут возникать как продукты некоторых патологических процессов, протекающих в живом организме. Некоторые мононуклеотиды и родственные им вещества проявляют сильное антибиотическое действие и подробно исследованы с этой стороны, как, например, антибиотик пуромицин. [c.176]

    Как показывает схема, существенную роль в гидролизе фосфорноэфирной связи, которая является главной связью полимерной цепи, играет свободная гидроксильная группа, находящаяся у соседнего углеводного атома С(2). Ее взаимодействие с атакующим анионом ОН- и соседней фосфатной группой приводит к замыканию циклического фосфата, который возникает как промежуточный продукт гидролиза. Далее сам циклический фосфат распадается в этих условиях, образуя смесь 2 - и З -фосфатов. При рассмотрении этого механизма становятся понятными обе отмеченные выше особенности — образование смеси изомер- ных нуклеотидов и неустойчивость РНК к щелочам. В самом деле, смесь изомерных нуклеотидов неизбежно должна образоваться, если реакция проходит через стадию циклического фосфата, который, как указывалось ранее (стр. 227), всегда дает смеси этих изомеров. Ясна также и роль соседнего гидроксила, который делает связь кислород — фосфор чувствительной по отношению к щелочам. Понятно, что обычные диэфиры фосфорной кислоты или ДНК, где соседние гидроксильные группы отсутствуют, будут иметь нормальную устойчивость к щелочам. Соседняя гидроксильная группа в монофосфатах а-гликольной системы облегчает гидролиз и других соединении, например липоидов. [c.249]

    Начальные этапы реакции распада пиримидиновых нуклеотидов катализируются специфическими ферментами. Конечными продуктами реакции являются СО,, МНз, мочевина, 3-аланин и 3-аминоизомасляная кислота. Следует указать, что гидролитический путь распада пиримидинов является, очевидно, главным путем образования 3-аланина, который может служить источником для синтеза ансерина и карнозина (см. главу 20), а также для образования КоА. Известно, что 3-аланин в животных тканях подвергается дальнейшему распаду. В тканях животных открыта специфическая аминотрансфераза, катализирующая трансаминирование между 3-аланином и пировиноградной кислотой. В процессе этой обратимой реакции синтезируются а-аланин и формилацетат (полуальдегид малоновой кислоты)  [c.503]

    Первая реакция темновой фазы - связывание СО2 с , 5-рибулозоди-фосфатом, далее это промежуточное соединение распадается на две молекулы 3-фосфоглицериновой кислоты. Затем протекает цикл Калвина -реакции, сходные с процессами пентозофосфатного цикла, приводящие к образованию гексоз, пентоз и других промежуточных продуктов, из которых синтезируются различные биомолекулы - аминокислоты, нуклеотиды, жирные кислоты, витамины. [c.94]

    Первое из этих соединений, 2, 3 -АМФ, образуется в качестве промежуточного продукта распада рибонуклеиновых кислот, в то время как циклический 3, 5 -АМФ (цАМФ) является естественно встречающимся рибо-нуклеотидом (он образуется из АТФ в процессе реаьщии, катализируемой ферментом аденилатциклазой). цАМФ наделен рядом уникальных функций и высокой биологической активностью в регуляции процессов обмена, выполняя роль медиатора внеклеточных сигналов в клетках животных. Аналогичной функцией наделены цГМФ, производные УДФ, ЦТФ и нуклеотиды в составе кофакторов и коферментов (см. главу 4). [c.104]

    Наряду с утилизацией глюкозы в печени происходит и ее образование. Непосредственным источником глюкозы в печени служит гликоген. Распад гликогена в печени происходит в основном фосфоролитичесюгм путем. В регуляции скорости гликогенолиза в печени большое значение имеет система циклических нуклеотидов. Кроме того, глюкоза в печени образуется также в процессе глюконеогенеза. [c.553]

    Внешние воздействия, например повышение температуры, добавле ние органических растворителей и другие, приводят к изменению макроструктуры. Это проявляется вначале в расхождении тяжей друг от друга (этот процесс условно называют плавлением). При гидролизе в достаточно мягких условиях отдельные полииуклеотидные цепи могут распадаться на нуклеотиды. Последние далее отщепляют при действии растворов щелочей фосфорную кислоту и превращаются в соответствующие нуклеозиды. Наконец, в присутствии кислот может протекать также и гидролиз гликозидных связей с образованием 2-дезок-си-О-рибозы и гетероциклических азотистых оснований. [c.665]

    Приведем пример одного из важнейших нуклеотидов, участвующих в биохимических превращениях, — адено-зин-5 -монофосфата (АМФ), продукта распада аденозин-трифосфата (АТФ) через промежуточный аденозиндифос-фат (АДФ) [c.927]

    Постоянный обмен нуклеотидов происходит в клетке. Нуклеоти-дазы гидролитически расщепляют нуклеотиды до нуклеозидов. К таким ферментам относятся нуклеозид-фосфорилаза. Под действием фосфорибомутазы рибозо-1-фосфат изомеризуется, превращается в рибозо-5-фосфат. АМФ дезаминируется до ИМФ под действием аденилатдезаминазы. Последующие реакции приводят к образованию гипоксантина, они идут обычным путем, гипоксантин окисляется до ксантина и затем до мочевой кислоты (рис. 14.16). Следовательно, в организме человека пурины распадаются до мочевой кислоты, которая выделяется с мочой, [c.437]

    Крупные молекулы (биополимеры) распадаются на основные структурные блоки (мономеры). Освобождающаяся энергия трансформируется преимущественно в тепловую форму и генерации АТФ при этом не происходит. Этот этап весьма важен по следующим причинам. Белки и нуклеиновые кислоты отличаются исключительным разнообразием. Количество видов белков исчисляется тысячами, после гидролиза же образуется только 20 аминокислот. Все разнообразие нуклеиновых кислот (ДНК и РНК) после гидролиза сводится к 5 видам нуклеотидов. Таким образом, расщепление полимеров до мономерных единииц резко сокращает набор химических молекул, которые могут быть использованы организмом. [c.455]


Смотреть страницы где упоминается термин Нуклеотиды распад: [c.212]    [c.178]    [c.207]    [c.378]    [c.223]    [c.389]    [c.186]    [c.178]    [c.168]    [c.491]    [c.492]    [c.550]    [c.516]    [c.118]    [c.117]   
Биохимия (2004) -- [ c.426 , c.427 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеотиды

Нуклеотиды, распад в тканях



© 2025 chem21.info Реклама на сайте