Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стекла деформация

    Типичными примерами упругих материалов являются сталь и стекло, деформация которых сопровождается возрастанием внутренней энергии. При высокоэластической деформации происходит понижение энтропии вследствие уменьшения конформационного набора молекулярных цепей. Если рассматривать этот процесс на молекулярном уровне, то упругость материала — результат повышения потенциальной энергии благодаря изменению валентных углов или межатомных расстояний в молекулах. Высокоэластическая деформация в большей степени присуща полимерным материалам, состоящим из свернутых цепных молекул. [c.341]


    Для каучука и других эластомеров уже сравнительно давно показано, что источником эластичности является уменьшение энтропии. Деформация каучуков—предельный случай, когда эластичность обусловлена главным образом изменением энтропии. Другим крайним случаем является хрупкое стекло, деформация которого сопровождается изменением потенциальной энергии без существенного изменения энтропии. [c.53]

    Фасонные части трубопроводов. Фасонные части служат для перехода с одного диаметра на другой, поворота трубопровода или разветвления потока. Из материалов, допускающих сварку и пластическую деформацию (сталь, цветные металлы, винипласт, полиэтилен и др.), фасонные части могут быть изготовлены непосредственно на монтажной площадке. Для трубопроводов из чугуна, керамики и стекла такие детали на монтажной площадке изготовить нельзя, поэтому при прокладке трубопроводов необходимо учитывать сортамент и размеры фасонных частей, поставляемых промышленностью. В настоящее время стремятся по возможности исключить изготовление фасонных деталей на монтажной площадке и производить их на специализированных предприятиях. [c.258]

    Равномерное распределение газа в основании аппарата имеет важное значение, если целью эксперимента не является преднамеренное изучение плохого распределения или специальных распределительных устройств. Стенки аппарата должны быть достаточно толстыми для предотвращения деформации при нагрузке, а если в качестве трасера используется двуокись азота, то материал должен быть устойчивым к коррозии. Органическое стекло легко разрушается, поэтому используют обычное стекло. [c.128]

    Может быть применен также микроскопический метод для определения дисперсности эмульсии. При помощи микроскопа можно определить размеры отдельных частиц, применяя специальные измерительные приспособления, например окулярный микрометр (рис. 12, 13). Однако по этому методу нельзя получить точных результатов, так как практически измерению подвергается лишь незначительная часть имеющихся в эмульсии частиц. Кроме того, при микроскопическом анализе эмульсий нельзя избежать ошибок, получаемых вследствие испарения жидкости в тонком слое, а также деформации частиц покровным стеклом. Поэтому микроскопический дисперсный анализ менее надежен и его можно применять, главным образом, для качественной характеристики эмульсий. [c.28]


    Компенсация теплового удлинения в сальниковом компенсаторе происходит не в результате упругой деформации, а путем перемещения конца трубы в сальнике. Компенсаторы этого ти па изготовляют из хрупких материалов, например фарфора и стекла. [c.71]

    В свете накопленных данных возникло предположение [3, 30], что в основе механизма КРН лежит не электрохимическое растворение металла, а ослабление когезионных связей между поверхностными атомами металла вследствие адсорбции компонентов среды. Этот механизм был назван адсорбционным. Так как хемосорбция специфична, разрушающие компоненты среды также обладают специфичностью. С уменьшением поверхностной энергии металла увеличивается тенденция к образованию трещин при растягивающих напряжениях. Следовательно, этот механизм соответствует критерию образования трещин на стекле и других хрупких твердых телах — так называемому критерию Гриффитса, согласно которому энергия деформации напряженного твердого тела должна превышать энергию общей увеличившейся поверхности, образованной зарождающейся трещиной [31 ]. Любая адсорбция, снижающая поверхностную энергию, должна способствовать образованию трещин, однако вода, адсорбированная на стекле, снижает напряжение, необходимое для растрескивания. [c.140]

    Для типичных твердых тел реологические кривые строят в координатах напряжение — деформация. При малых напряжениях у них происходят обратимые упругие деформации, за пределом упругости — пластические деформации и затем твердое тело разрушается. Хрупкие тела (керамика, бетоны, стекло и др.) разрушаются при нагрузках, меньших предела текучести (предела упругости). [c.188]

    Резины на основе акрилатных каучуков обладают повышенной стойкостью в среде серосодержащих углеводородов при высоких температурах. Они отличаются высокой стабильностью динамических свойств в процессе теплового старения. Им свойственна повышенная износо-, тепло-, кислородо-, озоностойкость стойкость к маслам и смазкам низкая газопроницаемость при высоких давлениях и температурах до 150 °С устойчивость к многократным деформациям. Высока адгезия акрилатных каучуков к стеклу, алюминию, стали, хлопчатобумажным тканям, капронам. По теплостойкости акрилатные каучуки стоят несколько ниже, чем силоксановые и фторкаучуки, но значительно их дешевле. На основе акрилатных каучуков изготавливают теплостойкие армированные транспортер- [c.17]

    Самым распространенным видом испытаний при определении физико-механических свойств материалов являются испытания на твердость. Так как под твердостью подразумевают характеристику сопротивляемости материала местному, сосредоточенному на его внешней поверхности напряжению, испытание на твердость всегда производится на поверхности и носит характер внедрения в материал какого-либо другого тела. Твердость всегда определяют в результате сообщения материалу некоторой пластической деформации в пределах весьма небольшого объема. При этом возникают высокие напряжения. Только этим можно объяснить возможность получения "пластических состояний" при определении твердости любых, даже вовсе не пластичных, материалов (стекло, алмаз и т. д.). Последнее дает возможность применять испытания на твердость там, где другие испытания не применимы. [c.61]

    Нагревать мерные колбы нельзя, иначе может произойти деформация стекла, что повлечет за собой изменение их емкости . Мерные колбы различаются по емкости 25 50 100 250  [c.52]

    Склонность стекол к объемной кристаллизации без деформации при термообработке, к формированию ситалловой структуры определяется химическим составом исходного стекла и введением инициаторов объемной кристаллизации. Так, ликвационные явления, особенно метастабильного характера, способствуют получению стеклокристаллических структур, и на основе ликвирующих составов могут быть получены ситаллы без дополнительного введения инициаторов кристаллизации. [c.203]

    Выбранную термометрическую трубку припаивают к стеклянной трубочке. Для этого капилляр запаивают с двух сторон, прогревают на газовой горелке по всей длине, а затем нагревают узким пламенем на одном из краев при одновременном вращении. В месте нагревания появляется расширение, вызванное деформацией размягченного стекла находящимся внутри нагретым воздухом. После охлаждения образовавшийся шарик разрезают в его максимально широкой части, отверстие развальцовывают в пламени горелки шилом из вольфрамовой проволоки и припаивают к стеклянной трубочке. Затем отрезают капилляр необходимой длины так, чтобы плоскость среза оказалась перпендикулярной оси капилляра. Наконец, собирают всю систему, обеспечивающую регулировку высоты ртутного столба. Ячейка для снятия полярографических кривых описана на с. 236—238, [c.18]

    Для обычной стеклующейся жидкости (глицерин, аморфные силикаты, канифоль) характер термомеханической кривой несколько иной. Деформация увеличивается при нагревании монотонно и непрерывно, что соответствует непрерывному уменьшению вязкости с повыщением температуры (рис. V. 2). При низких температурах, [c.139]


    Удлинения, возникающие на участке И кривой растяжения 2, после снятия нагрузки уменьшаются незначительно. Так как без приложения внешних напряжений тепловое движение в полимерном стекле не способно заметно изменять конформации макромолекул, фиксированные молекулярными взаимодействиями, то уже развившаяся вынужденно-эластическая деформация после снятия нагрузки оказывается фиксированной. Однако при нагревании полимера выше Тс, когда подвижность участков макромолекул возрастает, вынужденно-эластическая деформация полностью релак-сирует. [c.157]

    Методика работы. Из деформированных образцов вырезают скальпелем пластинки размером (2,5ХЮ) м вдоль, перпендикулярно и под углом 45° к направлению деформации. Закрепляют образцы на предметном стекле в строго фиксированном положении и подвергают травлению в плазме безэлектродного высокочастотного газового разряда. На подготовленную поверхность напыляют углеродную реплику (направление напыления строго фиксировано и одинаково для всех образцов). Обработанную соответствующим образом углеродную реплику просматривают в электронном микроскопе сначала при малых увеличениях, а после нахождения характерных участков при больших увеличениях. Изображение фиксируют на фотопластинки и с них изготавливают микрофотографии. Параллельно с этим из деформированных образцов вырубают лопатки (по ГОСТ 16337—70) в направлении деформации и перпендикулярно ему. Лопатки испытываются на растяжение. Рассчитывают значения разрушающего напряжения при растяжении и относительного удлинения при разрыве (см. работу 43). [c.120]

    При низкой температуре деформация мала. Она мало увеличивается с температурой. Аморфный полимер ведет себя при низких температурах как стекло. Мы говорим, что полимер находится в стеклообразном состоянии. Если нагрузки при определении термомеханической кривой невелики и не превышают 0,1 МПа, то деформация составляет доли процента от первоначальной высоты образца. Такая малая деформация характерна и для многих низкомолекулярных твердых тел. В случае полимеров она служит надежным указанием на то, что под действием приложенного напряжения сегменты макромолекул не перемещаются, а следовательно, макромолекулы не меняют форму статистических клубков. [c.101]

    Скорость течения воды, даже через самые тонкие поры в жестких мембранах, прямо пропорциональна давлению для мембран из пористого стекла с порами радиуса 1 нм прямая Q — Р проходит через начало координат , течение воды описывается законом Пуазейля (XIV. 4). Эта зависимость иногда маскируется деформацией (часто — необратимой) структуры каркаса под давлением, напоминая течение пластичного тела (см. далее), наблюдаемой з глинах, почвах, грунтах и некоторых полимерных матрицах, а также встречным потоком жидкости (электроосмотическим), возникающим вследствие потенциала течения [15, 17]. [c.265]

    До 100—110° полиметилметакрилат, полученный блочным методом, остается в твердом стекловидном состоянии. Выше этой температуры начинается постепенный переход полимера в эластичное состояние. При дальнейшем повышении температуры эластические деформации полимера возрастают и появляется некоторая все возрастающая пластичность. Выше 260° начинается деполимеризация полимера. Ниже приведены некоторые показатели свойств полиметилметакрилата, применяемого в качестве органического стекла. [c.825]

    Фланцы на утолщении (бурте) (рис. 29, ж) делают на аппаратах из стекла, кера1Лгки и пластмасс, не поддающихся пластической деформации (например, фаолита), а также при нежелательности сварки патрубка из высоколегированной стали с фланцем, изготовленным из углеродистой стали. Фланцы с буртом применяют до весьма значительных давлений. [c.54]

    Ванна печи. Печь имеет прямоугольную ванну с округленными углами. Футеровка стенок ванны выполняется блоками из плавленого корунда. Блоки предварительно не обрабатываются и идут на кладку сразу после литья. Зазор между блоками принимается минимальным, практически он составляет 10—12 мм. Кладка осуществляется на порошке корунд (экораль) тониной 0,2 мм на жидком стекле. Модуль жидкого стекла 1,34. Верхний пояс стенки и нижний выкладываются из высокоглиноземистого шамотного кирпича. Подина ванны футеруется углеродистыми блоками, уложенными на коксовую пыль размером 0,2—1 мм. Толщина футеровки стенок 800 мм. Зазор между футеровкой и кожухом ванны 70 мм забивается шлаковатой. Температурное расширение корунда поглощается за счет кладки углов ванны печи, которые выкладываются не по контуру кожуха, а с зазором и засыпается порошком корунда. Зазоры и слой изоляции из шлаковаты позволяют футеровке нормально расширяться без деформации стенок. [c.133]

    В промьшшейной практике дисперсность нефтяных эмульсий изменяется в широких пределах и зависит от условий их получения. Экспериментально степени дисперсности эмульсий обычно определяют микроскопическими или седиментащюнным методом. Мы считаем микроскопический метод менее точным, так как измерение происходит на очень малых участках, ограниченных полем видимости микроскопа. Кроме того, при микроскопическом анализе эмульсии нельзя избежать ошибок, обусловленных испарением жидкости в тонком слое, а также деформацией частиц покровным стеклом. Более точные результаты степени дисперсности можно получить при анализе эмульсии седиментационным методом, разработанным Н. А. <№гуровским и основанным на измерении скорости оседания (или всплывания) диспергированных частиц, зависящей от их величины. [c.20]

    Стеклов О.И., Бадаев A. . К методике испытаний на коррозию под напряжением при одноосном изгибе с "посгоянной деформацией" //Заводская лаборатория.-1970.-№8.-С.983-984. [c.419]

    Таким образом, при распространении крупкой трещины в металлах должно соблюдаться равенкгтво выделяющейся энергии упругой деформации и работы пластической деформации. Поскольку значительно больше уя > критическая длина трещин в хрупких металлах имеет величину порядка миллиметров, в то время как в истинно хрупких материалах, например, стекле, — микрометры. Ирвин ввел параметр [c.44]

    Полимеры в стеклообразном состоянии обладают прочностью твердых тел если прилолсить значительную силу (при сжатии, растял ении, изгибе), они деформируются незначительно. Это объясняется тем, что в стеклообразном состоянии молекулы связаны наиболее прочно и наименее гибки. В сравнении с низко-молекулярными стеклами полимерные стекла могут несколько изменять свою форму под действием деформирующих усилий. Объясняется это тем, что часть звеньев сохраняет подвил<ность при наличии прочной связи на многих других участках макромолекулы. Низкомолекулярные стекла разрушаются без деформации или претерпевая едва заметную деформацию. В этом легко убедиться, если сравнить свойства органического стекла (поли-метилметакрилата) с обыкновенным (силикатным) стеклом. Чем нил<е температура в области стеклообразного состояния, тем меньшее число звеньев обладает подвилсностью, и при определенной температуре, называемой температурой хрупкости, полимерные стекла разрушаются без деформации, подобно низкомолекулярным стеклам. Более хрупки в равных температурных условиях стеклообразные полимеры, построенные из глобулярных частиц. Глобулярные молекулы теряют подвижность в целом, подобно молекулам низкомолекулярных соединений, и полимеры глобулярного строения раскалываются по линии раздела глобулярных частиц. Весьма валено поэтому в процессе переработки полимеров преобразовать глобулярную структуру в фибриллярную, что удается, например, при переработке поливинилхлорида. [c.17]

    Механические свойства полимеров. Полимеры по своим механическим свойствам отличаются от остальных твердых и квазитвердых тел (стекла) ввиду сильно проявляющихся релаксационных явлений. Закон нормальной упругости Гука (см. гл. 10) к ним мало применим, так как относительная деформация зависит от многих переменных  [c.500]

    Объем стекол близок к объему твердых металлов, по в ряде отношений они обладают замечательными свойствами. Они обладают высокой прочностью (так РеВуо прочнее угольных нитей) и в то же время хрупкость их мала и они способны к некоторой пластической деформации (достигающей иногда десятков процентов до разрушения). Поэтому металлические стекла используются как упрочняющие в композиционных материалах. Они обладают высокой твердостью и износостойкостью и используются как режущие кромки. Характер дефектов в стеклах существенно другой, чем в кристаллических телах. В частности, в них отсутствуют границы зерен. [c.378]

    Печи непрерывного действия применяют при массовом поточном производстве наибольшее распространение они получили как агрегаты для различных видов термической обработки (закалки, отжига, отпуска и т. д.) черных и цветных металлов, но применяются и для нагрева металлических заготовок под горячую деформацию, для терм ообработки стекла, керамики, процессов сушки и других технологических процессов, связанных с нагревом. [c.46]

    Пластическим разрушением называется разрушение, которому Предшествуют деформации, обусловленные перегруппировкой от-дедьны.х элементов структуры тела. В кристаллических телах п низкомолекулярных стеклах эти деформации необратимы и носят название пластического течения. [c.208]


Смотреть страницы где упоминается термин Стекла деформация: [c.244]    [c.259]    [c.742]    [c.14]    [c.45]    [c.323]    [c.194]    [c.18]    [c.218]    [c.43]    [c.68]    [c.395]    [c.170]    [c.172]    [c.235]    [c.156]    [c.378]    [c.140]    [c.204]   
Структура и механические свойства полимеров Изд 2 (1972) -- [ c.136 ]




ПОИСК







© 2025 chem21.info Реклама на сайте