Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деформация полимеров вынужденно-эластическая

    Подобные измерения проведены Ю. С. Лазуркиным для многих полимеров, находящихся в стеклообразном состоянии. В отличие от металлов полимерные тела обнаруживают существенную зависимость предела вынужденной эластичности от скорости механического воздействия. Это еще раз свидетельствует о коренном отличии характера деформаций металлов (пластические) от деформации полимеров (вынужденно-эластические). Кривые растяжения полиметилметакрилата при разных скоростях растяжения приведены на рис. П. 10. [c.138]


    Явление вынужденно-эластической деформации полимеров было подробно изучено Лазуркиным С понижением температуры механическое напряжение, необходимое для перестройки молекул (предел вынужденной эластичности), повышается. Температура, при которой полимер начинает разрушаться при малых деформациях, а вынужденно-эластической деформации не наблюдается, представляет собой температуру хрупкости полимера. Таким образом, в стеклообразном состоянии для полимеров следует различать зону вынужденно-эластических деформаций и зону хрупкости. Температура хрупкости зависит от ме> молекулярного взаимодействия, плотности упаковки молекул, а также от молекулярного веса полимера Температуры стеклования и хрупкости высокомолекулярных стекол, определенные при одинаковых скоростях деформации, иногда образуют интервал в несколько десятков градусов. Так, если для полистирола интервал Тс—Гхр составляет около 10 °С, то для полиметилметакрилата он равен 100 °С, а для поливинилхлорида достигает даже 170 С Ч [c.124]

    Уже давно разрушение твердых тел подразделяют на хрупкое и нехрупкое (вязкое). Первоначально считали, что в условиях хрупкого разрушения прочность не зависит от скорости деформирования, но при вязком разрушении такая зависимость должна быть. В первом случае деформация носит чисто упругий характер, а во втором — разрушению предшествует также и остаточная, необратимая деформация Применительно к полимерам в твердом (стеклообразном) состоянии этому соответствует подразделение разрушения на хрупкое и вынужденно-эластическое. Первому предшествует упругая деформация, второму вынужденно-эластическая и (частично) упругая. [c.146]

    По определению Коршака [2, 3], теплостойкость — та предельная температура, при которой полимер теряет свою механическую прочность при действии той или иной нагрузки . При этом под разрушением подразумевается как хрупкое разрушение (при малых деформациях), так и разрушение с образованием шейки (при больших деформациях, имеющих вынужденно-эластический характер). В последнем случае целесообразнее говорить о механическом размягчении — деформируемости полимера под действием механической нагрузки. [c.67]

    В зависимости от физического состояния полимера пленки в большей или меньшей степени проявляется тот или другой вид деформации. Поскольку в большинстве покрытий полимер находится в застеклованном (аморфном) или кристаллическом состоянии, характерным для них является проявление упругой и высокоэластической деформаций. Особенность полимеров в застеклованном состоянии — склонность их к большим обратимым деформациям, называемым вынужденно-эластическими, — проявляется и в свойствах покрытий. Эти деформации при больших нагрузках нередко достигают десятков и сотен процентов. [c.69]


    Высокоэластическая деформация полимера в стеклообразном состоянии получила название вынужденно-эластической (по Александрову). [c.135]

    Большие деформации, развивающиеся в стеклообразных полимерах под влиянием больших напряжений, были названы вынужденно-эластическими, а само явление — вынужденной эластичностью. При вынужденно-эластической деформации не происходит смещения центров тяжести макромолекул друг относительно друга. Как и при высокоэластической деформации, изменение формы образца происходит за счет изменения конформаций макромолекул. Однако в отличие от высокоэластической деформации этот процесс при данной температуре практически необратим. [c.156]

    Уменьшение наклона кривой а = (г) по мере увеличения степени растяжения связано с началом развития в образце вынужденно-эластической деформации. С возрастанием напряжения скорость вынужденно-эластической деформации быстро увеличивается. В точке максимума на кривой а = / (е) скорость вынужденноэластической деформации становится равной скорости растяжения, задаваемой прибором. Напряжение, при котором это наблюдается, называют пределом вынужденной эластичности (ств). По достижении Ов происходит резкое сужение образца — образование так называемой шейки . При переходе в шейку полимер ориентируется и его свойства по сравнению со свойствами исходного материала существенно изменяются. Ориентированный материал обладает в стеклообразном состоянии более высокими значениями модуля упругости и предела вынужденной эластичности в направлении ориентации, чем изотропный материал. Когда при образовании шейки достигается степень вытяжки, обеспечивающая заметное возрастание 0в, развитие вынужденно-эластической деформации в шейке резко замедляется. Процесс деформации продолжается у границ шейки, где сечение образца уменьшено, т. е. там, где напряжение повышено, а упрочнение еще мало. На пологом участке кривой растяжения (участок II) напряжение при удлинении остается практически постоянным. Поперечное сечение шейки изменяется мало, и удлинение образца происходит, главным образом, за счет вынужденной эластической деформации материала у границ шейки. Длина шейки при этом увеличивается. Растяжение с образованием шейки и дальнейшим ее распространением является особенностью твердых полимеров. [c.157]

    Удлинения, возникающие на участке И кривой растяжения 2, после снятия нагрузки уменьшаются незначительно. Так как без приложения внешних напряжений тепловое движение в полимерном стекле не способно заметно изменять конформации макромолекул, фиксированные молекулярными взаимодействиями, то уже развившаяся вынужденно-эластическая деформация после снятия нагрузки оказывается фиксированной. Однако при нагревании полимера выше Тс, когда подвижность участков макромолекул возрастает, вынужденно-эластическая деформация полностью релак-сирует. [c.157]

    Твердые полимеры в отличие от обычных твердых тел обладают важной особенностью — способностью при больших напряжениях подвергаться так называемым вынужденно-эластическим деформациям, что приводит к возникновению ориентированного состояния полимеров. Все химические волокна и пленки находятся в этом состоянии и обладают ярко выраженной анизотропией структуры и физико-механических свойств. [c.104]

    Мы видели, что перемещение сегментов в процессе вынужденноэластической деформации происходит под действием напряжения, а не в процессе теплового перемещения, поскольку таковое в стеклообразном состоянии отсутствует. Однако определенный запас тепловой энергии в полимере имеется и при 7<Т(.. С ростом температуры в области ниже Тс запас тепловой энергии сегментов увеличивается и требуется все меньше внешней механической энергии для перемещения сегментов и развития вынужденно-эластической деформации. Поэтому предел вынужденной эластичности уменьшается с ростом Т. Формы кривой а—е при разных температурах приведены на рис. 10.5. При понижении температуры не только увеличивается предел вынужденной эластичности, но и сама кривая вырождается, становится неполной. Разрушение образца может произойти даже раньше, чем достигнут предел вынужденной эластичности От. При оСот разрушение, естественно, происходит при очень малых деформациях (доли процента), а это означает, что полимер при низких температурах ведет себя как хрупкий, не [c.149]

    Мы видим, что при разрушении даже хрупкого полимера, где перемещение сегментов под действием перенапряжений в вершине растущей трещины относительно невелико и внешне вынужденно-эластическая деформация не проявляется, наибольшие затраты энергии при разрушении идут на деформацию и связанное с этим рассеяние механической энергии в виде теплоты. Особенно сильно поглощается механическая энергия при образовании микротрещин. Чем больше образуется микротрещин (например, при ударе), тем труднее разрушить полимер, тем выше его стойкость к ударным нагрузкам. Образование микротрещин часто проявляется в виде побеления ( серебрения ) образца в месте удара. [c.198]


    Ориентация полимерных молекул возможна как для аморфных, так и для кристаллических полимеров, у которых при растяжении наблюдается также и ориентация кристаллических областей. Для аморфных полимеров возможна ориентация всей цепной молекулы в целом (при необратимой пластической деформации) и ориентация участков молекул (при высокоэластических или вынужденно-эластических деформациях). Оба механизма ориентации имеют релаксационный характер, причем преобладание одного механизма ориентации над другим определяется температурой и скоростью вытяжки полимера. [c.146]

    Релаксационные явления и связанная с ними вынужденная эластическая деформация приводят к тому, что первичные трещины, образующиеся при растяжении органического стекла, раскрываются настолько широко (на 0,5 мкм и более), что удается наблюдать их возникновение и развитие непосредственно под микроскопом и даже невооруженным глазом. Эта особенность органических стекол и подобных им полимеров позволяет получить прямые доказательства неодновременности разрыва образца и подтверждение теории хрупкой прочности. В пользу этих представлений также говорят результаты исследования поверхности, образующейся при разрыве образца (поверхность разрыва), на которой хорошо видна линия встречи трещин. У полиметилметакрилата эта линия представляет собой гиперболу, возникшую вследствие пересечения двух растущих с одинаковой скоростью трещин, одна из которых начала развиваться раньше другой. У полистирола кривые менее правильны, что, по-видимому, связано с неодинаковой скоростью распространения различных трещин или с зависимостью ее от времени. Иногда линии встречи трещин [c.419]

    Данный расчет позволяет учесть нелинейные эффекты, связанные с неаддитивным сложением сил. Проведенный анализ соответствует малым напряжениям. При больших напряжениях, но при 8<1 (в области вынужденно-эластической деформации) необходимо учесть при преобразовании исходной системы уравнений (5.1), (5.2), (5.7) — (5.10) члены, пропорциональные е , что соответственно расширит спектр времен релаксации до 10 (времена релаксации будут зависеть от е) и в статических условиях даст f t- oo)=As.—Ве . Чтобы описать область ориентационного упрочнения полимеров (чему соответствуют еще большие деформации, но при этом остается е<1), необходимо учесть в исходных уравнениях члены, пропорциональные что приведет к соответствующему перегибу кривой ст=/(е) и дальнейшему росту напряжения а при увеличении е. Число времен релаксации соответственно возрастет до 14. [c.164]

    НЫХ условиях. Например, в твердых полимерах, по крайней мере при не очень низких температурах, в вершине треш,ины из-за больших перенапряжений может происходить вынужденно-эластическая деформация, изменяющая конфигурацию вершины трещины и, самое главное, препятствующая после разгрузки образца процессу смыкании трещины. Для таких полимеров скорость роста трещины в широкой области напряжений выражается, формулой (1. 18), которая с учетом поправки на изменение энергии активации с температурой примет следующий вид  [c.53]

    При адиабатическом процессе нагружения тела, проявляющего деформацию вязкого течения, принимают [561, с. 119], что будет происходить увеличение энергии. Возрастание энтропии обусловлено необратимым характером деформации. (Следует, однако, иметь в виду, что для полимеров характерно одновременное возрастание обратимой высокоэластической или вынужденно-эластической составляющей деформации). Возрастание энтропии будет [c.263]

    Эта специфика разрушения полимерных тел определяется их способностью развивать высокоэластическую или вынужденно-эластическую деформацию. В зависимости от гибкости цепей макромолекул, степени их ориентации, температуры и скорости нагружения и других факторов эти особенности разрушения полимеров могут реализоваться более или менее полно. Наиболее полно они реализуются при разрушении эластомеров. Поэтому одни из первых работ, посвященных кинетике разрушения полимерных тел, были проведены на эластомерах [294, с. 4 295, с, 1364]. [c.277]

    Способность аморфных полимеров к большим деформациям принято называть вынужденной эластичностью, а сами деформации — вынужденно-эластическими [12]. Слово вынужденно  [c.90]

    Обратимость таких вынужденно-эластических деформаций реализуется при повышении температуры по сравнению с той, при которой проводилось деформирование, причем полное восстановление может либо растягиваться на широкий интервал температур, либо происходить практически скачкообразно при достижении температуры стеклования (если, например, растяжение аморфного полимера производилось ниже этой температуры). [c.303]

    Первой причиной появления трещин серебра является наличие структурных микродефектов и, по-видимому, вынужденная эластическая деформация микроструктурных элементов полимера в этих ослабленных дефектных местах. Из-за вынужденной эластической деформации материала трещины размер трещин серебра может быть сравнительно большим (0,5 мкм). Замедление роста трещин серебра объясняется релаксационными процессами и уменьшением перенапряжений в микродефектах. В результате релаксационных процессов скорость роста трещин серебра примерно постоянная. Было показано, что трещины серебра имеют иное строение, чем обычные трещины. Они представляют собой клиновидные области расслоившегося и сильно деформированного полимера, подвергшегося холодной вытяжке и упрочнению. Края трещин серебра скреплены ориентированными молекулярными тяжами . Считают, что образование тяжей связано с пачечным или фибриллярным строением полимеров [26]. [c.118]

    Молекулярный механизм развития вынужденно-эластической деформации кристаллических полимеров принципиально отличается от рассмотренного выше. В данном случае подвижность полимерных молекул ограничивается наличием кристаллических областей. Следовательно, любое изменение конформации полимерной цепи влечет за собой изменение кристаллической структуры, реализуемое посредством рекристаллизации поэтому напряжение, соответствующее пределу текучести, иногда называют напряжением рекристаллизации. Действие механических напряжений по-разному изменяет температуру плавления различных элементов структуры. Для благоприятно ориентированных элементов температура плавления повышается и, следовательно, возрастает их стабильность. Напротив, температура плавления элементов с неблагоприятной ориентацией может существенно снизиться поэтому в процессе деформации эти структурные элементы плавятся и потом вновь кристаллизуются в виде более устойчивых структурных форм. [c.29]

    Термофлуктуационный механизм осложняется тем, что релаксационные процессы проявляются в полимерах тем отчетливее, чем выше температура. Так, по мере перехода к высоким температурам в микрообъемах перенапряжения проявляется вынужденная эластическая деформация. Вначале этот релаксационный процесс приводит к высокоэластическим деформациям в местах концентрации напряжений, главным образом у вершины микротрещин (термо-флуктуационно-релаксационный ме.ханизм), а затем при более высоких температурах — к образованию трещин серебра , стенки которых связаны между собой микротяжами (релаксационный локальный механизм разрушения). Выше температуры стеклования в высокоэластическом состоянии господствующими являются релаксационные процессы и механизмы разрушения приобретают резко отличительные черты (в табл. 11.2 — вязкоупругий механизм разрушения). Здесь в местах концентраций развивается локальное вязкое течение, которое приводит к образованию так называемых надрывов , являющихся аналогами трещин в хрупком состоянии. На схеме прочностных состояний (рис. 11.4) указаны области действия различных механизмов разрушения некристаллических полимеров, а также область пластического состояния между температурой пластичности и температурой текучести Т . Разрушение в [c.289]

    Поэтому по предложению Л. П. Александрова способность стеклообразных полимеров к большим деформациям называют явлением вынужденноб эластичности, л сами деформации — вынужденно-эластическими. [c.149]

    Для стеклообразных полимеров особенно важна способность выдерживать длительное действие внешней силы (нагрузки) при сохранении размеров в заданных пределах. Это определяется величиной и закономерностями ползучести. На рис. 10.6 показаны кривые ползучести полистирола при разных нагрузках. Видно, что при нагружении мгновенно увеличивается длина образца за счет развития упругой деформации (деформация пружины). Далее развивается замедленная упругость, качественно аналогичная развитию высокоэластической деформации (элемент Кельвина — Фойхта). Эта замедленная упругость характеризует развитие вынужденно-эластической деформации. Далее возможны два случая либо деформация перестает увеличиваться после достижения определенной величины, либо она развивается непрерывно. В первом случае мы говорим, что имеет место затухающая ползучесть, во втором случае — незатухающая ползучесть. Последняя развивается как за счет истинно необратимой, так и за счет замедленной вынужденноэластической деформации без образования шейки. Полимер может применяться как конструкционный материал только в том случае, если под действием заданной нагрузки в нем развивается затуха- [c.151]

    Высокоэластическая деформация, вынужденно-эластическая деформация стеклообразных полимеров, пластическая деформация кристаллических полимеров приводят к развертыванию молекулярных клубков и ориентации макромолекул в нанравлении действия силы. Ориентированные эластомеры можно охладить до Т<Тс и таким образом зафиксировать состояние ориентации макромолекул. Все ориентированные полимеры имеют одно общее свойство их прочность и модуль упругости при растяжении в направлении ориентации много больше, чем у неориентированного полимера, а гфочность и модуль при деформации в перпендикулярном направлении ме]Н)Ше, чем у исходного пеорисптиронанпого полимера. [c.191]

    Хрупкий стеклообразный полимер, например полистирол (ПС), деформируется до разрушения по кривой типа кривой / на рис. 12.16, б. Это типичная кривая хрупкого разрушения. Однако тот же полистирол прн более высокой температуре может обнаружить явление вынужденно-эластической деформации (см. гл. 10) и дефор-мироватьс ч по кривой типа кривой / па рнс. 12.16, а. При этом образуется шейка так же, как у полиэтилена высокой плотности. Макромолекулы полистирола в шейке также ориентированы в направлении растяжения. Если теперь из шейки вырезать образец и испытать его отдельно при обычной температуре, снян кривую а— к, то эта кривая будет иметь вид кривой 2 на рис. 12.16, о. Видим, [c.192]

    Одним из основных видов деформации в вершине трещины, растущей в хрупком полимере, является вынужденно-эластическая деформация. Несмотря на то что полимер в целом не обнаруживает ннкакн.х признаков вынужденной эластичности, в микрообъеме может наблюдаться перемещение сегментов н их последующее разрушение. Так, при нагревании до температуры хрупкости (Т = Тхр), когда шейка в образце еще не развивается, в микрообъеме в вершине трещины может развиваться значительная вынужденно-эла- [c.197]

    При вынужденно-эластической деформации некоторых стеклообразных полимеров (например, ацетата и [1цтрата целлюлозы) образования шейки не наблюдается. На деформ а гшон ной кривой в таких случаях отсутствует максимум (рис. 87). [c.211]

    Таким образом, деформационные свонства полимера в стеклообразном состоянии можно охарактеризовать модулем упругости, 1[ределом вынужденной высокоэластичности, его изменением с температурой, ее тичннами упругой н вынужденно-эластической деформации. [c.287]

    Линейные аморфные полимеры в зависимости от температуры могут находиться в трех достаточно четко разграниченных физических состояниях [146, 162—165] стеклообразном, высокоэластическом и вязкотекучем, ограниченных температурой стеклования Тс и температурой текучести Тт- Кроме этих основных физических состояний при более детальном изучении особенностей деформации в зависимости от температуры выделяют еще два промежуточных (переходных) состояния вынужденно-эластическое и вынужденно-пластическое [166, 167]. Первое из них является частью о бласти стеклообразного состояния па границе с высокоэластическим, а второе — частью области высокоэластичеокого состояния на границе с вязкотекучим. [c.53]

    В хрупком состоянии скорость роста трещин п ирсчность полимера зависят только от температуры (по уравнению П. 6, стр. 80). Температура хрупкости Г р, (см. рис. 42, гл. И) является условной границей, разделяющей два прочностных состояния твердого полимера. Так, процесс хрупкого разрушения проявляется в виде растрескивания, побеления образцов, появления трещин серебра и т. д. при температурах несколько выше С другой стороны, при температурах несколько ниже в перенапряженных местах образца (неоднородности, дефекты, трещины) наблюдается местная вынужденно-эластическая деформация, приводящая к дополнительной ориентации материала. В целом характер разрущения зависит от соотношения скоростей процессов вынужденно-эластической деформации и разрушения. [c.135]

    Переход от хрупкого разрыва к вынужденно-эластической деформации ориентированного полимера наблюдается и при изменении угла между направлением растяжения и направлением ориентации (см. рис. 80). С увеличением степени ориентации хрупкая прочность в направлении ориентации сильно возрастает, а в поперечном направлеиин к ориентации—сильно уменьшается. В результате при продольной ориентации наблюдается резкое снижение Тхр., ири поперечной—резкое повышение (см. [c.137]

    Рассматривая особенности разрушения неориентированных аморфных полимеров, Г. М. Бартенев принимает, что ниже температуры хрупкости (Гхр) полимеры ведут себя подобно хрупким твердым телам. Выше температуры хрупкости на процесс разрушения полимеров существенно влияют релаксационные процессы. В вершине растущего дефекта имеет место вынужденно-эластическая деформация. Образец покрывается так называемыми трещинами серебра. Створки трещины соединены микротяжами, которые одновременно деформируются и разрушаются. В соответствии с изложенным выше Г. М. Бартенев считает, что в различив [c.145]

    Исследование влияния наполнителей на множественные переходы в аморфных полимерах, находящихся в различных физических состояниях, и на величину и положение подобластей стеклообразного состояния показало, что увеличение концентрации наполнителя приводит сначала к резкому увеличению всех определенных из механических характеристик температур перехода, а затем они изменяются мало [184—187]. При этом была обнаружена большая чувствительность температур перехода наполненных полимеров к скорости деформации по сравнению с ненаполненными, объясняемая уменьшением подвижности цепей под влиянием поверхности В результате изменения скорости деформации и концентрации наполнителя один и тот же полимер при данной температуре может находиться в хрупком, хрупкоэластическом, вынужденно-эластическом или высокоэластическом состоянии. При наличии в полимере множественных переходов, как правило, высор-температурные переходы под влиянием наполнителя смещаются в сторону более высоких, а низкотемпературные—более низких температур. [c.101]

    Следует заметить, что механизм разрушения одного и того же полимера может быть различным в зависимости от того, в какой области температур испытывается образец. Например, ниже температуры хрупкости большинство полимеров могут испытывать разрушение, протекающее как по атермическому (гриффитовскому), так я по термофлуктуационному механизму разрушения. Вблизи ОК, где тепловое движение, по-видимому, не играет большой роли и не влияет на кинетику роста микротрещии, разрушение полимеров иредставляет собой атермический процесс. При более высоких температурах (но не выше Гхр), когда тепловые флуктуации определяющим образом влияют на долговечность, разрушение полимеров представляет собой термофлуктуа-ционный цроцесс. В случае твердых полимеров ири температурах Тхр<Т<Т0 возможен как термофлуктуаци-онный, так и релаксационный механизм разрушения. Последний связан с образованием трещин серебра и возникновением вынужденно-эластических деформаций. Явление вынужденной эластичности, природа которого была выяснена Александровым [21], заключается в том, что под действием больших напряжений аморфный полимер, находящийся в стеклообразном состоянии, способен испытывать большие деформации. Остаточная деформация, возникшая в полимере, сохраняется, если он находится в стеклообразном состоянии, но исчезает, если его нагреть выше ТВ работах Александрова [21] и Лазуркина [22] было показано, что вынужденная эластичность имеет релаксационный характер. Долговечность полимера, находящегося в области температур, в которой возможна вынужденно-эластическая деформация, будет определяться в основном временем, н течение которого трещины серебра распространятся на значительную часть образца. [c.301]

    В стеклообразном и кристаллическом состояниях полимеры способны к чисто упругой (гуковской), вынужденно-эластической деформациям, а также к деформации ползучести. В высоксэласти-ческом состоянии доминирует высокоэластическая деформация. В вязкотекучем состоянии преобладает необратимая пластическая деформация, сопровождающаяся также обратимой высокоэластической. [c.44]


Смотреть страницы где упоминается термин Деформация полимеров вынужденно-эластическая: [c.254]    [c.67]    [c.158]    [c.159]    [c.156]    [c.198]    [c.200]    [c.106]    [c.227]    [c.39]    [c.218]    [c.163]    [c.29]   
Термомеханический анализ полимеров (1979) -- [ c.197 ]




ПОИСК





Смотрите так же термины и статьи:

Вынужденная эластическая деформация

Деформации полимера

Эластическая



© 2025 chem21.info Реклама на сайте