Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стекла низкомолекулярные

Рис. V. 2. Термомеханическая кривая стеклующейся низкомолекулярной жидкости. Рис. V. 2. <a href="/info/15557">Термомеханическая кривая</a> стеклующейся низкомолекулярной жидкости.

    I. На основании анализа результатов калориметрических ис следований большого числа стеклующихся низкомолекулярных полимерных жидкостей Вундерлих [86] пришел к выводу, что ве личина скачка теплоемкости при 7 , рассчитанная на 1 моль эле ментарных структурных бусинок вещества, имеет универсальное значение  [c.69]

    Типичные представители низкомолекулярных веществ, которые легко стеклуются, — это простые сахара. [c.77]

    При низкой температуре деформация мала. Она мало увеличивается с температурой. Аморфный полимер ведет себя при низких температурах как стекло. Мы говорим, что полимер находится в стеклообразном состоянии. Если нагрузки при определении термомеханической кривой невелики и не превышают 0,1 МПа, то деформация составляет доли процента от первоначальной высоты образца. Такая малая деформация характерна и для многих низкомолекулярных твердых тел. В случае полимеров она служит надежным указанием на то, что под действием приложенного напряжения сегменты макромолекул не перемещаются, а следовательно, макромолекулы не меняют форму статистических клубков. [c.101]

    Полиметиленоксид [полиформальдегид —СНг—О—] [3], полученный впервые А. М. Бутлеровым полимеризацией формальдегида в присутствии кислых катализаторов, был низкомолекулярным. Полиметиленоксид с более высокой молекулярной массой синтезирован Штаудингером полимеризацией формальдегида при 80 °С. В настоящее время полимеризацией сухого и свободного от метанола формальдегида в среде сухого бензола или толуола получен полиметиленоксид с молекулярной массой 400 000, плотностью 1425 кг/м , с темп. пл. 180 °С и т. стекл. от —40 до —80 °С. Полиметиленоксид растворяется во многих органических растворителях только при нагревании до температуры выше 80°С. Такой полиметиленоксид обладает ценными техническими свойствами, из которых особенно выделяется высокая ударная прочность. Он применяется в производстве электроизоляторов, прокладок и других изделий. [c.338]

    М. М. Котон (23) изучал полимеризацию винилфурана в интервале температур от 20 до 200° в запаянных стеклянных ампулах. Было установлено, что в отсутствии катализаторов винилфуран при температуре 70—150° полимеризуется довольно медленно. Получаются вязкие прозрачные полимеры с молекулярными весами от 1000 до 6000. При 175—200° процесс полимеризации сильно ускоряется, образуются прозрачные твердые тела, нерастворимые в органических растворителях. Таким образом, из.меняя условия, можно получать или вязкий низкомолекулярный лак или высокополимерный твердый продукт. Было обнаружено, что пленки поли.меров винилфурана обладают хороши.ми диэлектрическими свойствами. Об этом сообщают также П. П. Кобеко с соавторами (24). Полимер винилфурана может при.меняться для получения покрытий на металлах, стекле, фарфоре в виде неплавких нерастворимых и мало проводящих электрический ток пленок. [c.209]


    Важная характеристика материалов также и температура хрупкости Т р. ниже которой полимеры ведут себя аналогично низкомолекулярным хрупким стеклам. У последних температура Тхр совпадает или почти совпадает с [c.253]

    Перенос низкомолекулярных веществ через полимерные стекла, характеризующиеся вынужденно-эластической деформацией [c.125]

    Перенос низкомолекулярных веществ в полимерных стеклах ниже температуры хрупкости [c.129]

    Мембраны - пленки или пластины полимерной природы, состоящие из органических или неорганических соединений, иногда нанесенные на керамику и мелкопористое стекло. Мембраны применяют для разделения жидких смесей электролитов и неэлектролитов методами ультрафильтрации, диализа, электродиализа или обратного осмоса. Мембраны позволяют отделить высокомолекулярные вещества с размерами частиц от 10 до 0,1 мкм от низкомолекулярных и электролитов, размер частиц которых меньше 10" мкм. В лабораториях мембраны готовят из нитро- и ацетатцеллюлозы, желатины и полимерных материалов на различной основе. [c.35]

    Аномальные стекла, которые образуются главным образом высокомолекулярными соединениями, имеют более сложную и неоднородную структуру, а также значительно более широкий интервал размягчения (50—150°). Значительная часть этого интервала падает на высокоэластическую область, отсутствующую у низкомолекулярны.х веществ. Все же при низких напряжениях, используемых для снятия термомеханических кривых, низкомолекулярные стекла ведут себя в некоторых отношениях аналогично высокомолекулярным, особенности которых обнаруживаются при более сильном механическом воздействии. [c.409]

    Вследствие сохранения некоторой подвижности у звеньев и других структурных элементов полимерной молекулы и их возможности перемещаться в свободном пространстве стекла с такой упаковкой обладают некоторой способностью деформироваться , а также относительно малой хрупкостью. Очень гибкие цепи, наоборот, легко принимают конформацию, способствующую хорошей укладке их, и плотность упаковки у них почти такая же, как и у низкомолекулярных стекол. Поэтому полимерные стекла, состоящие из подобных макромолекул, отличаются пониженной способностью к деформации, повышенными хрупкостью и упругостью, приближаясь по своим свойствам к нормальным стеклам. Например, образцы натурального каучука, охлажденные в жидком азоте до температур, значительно меньших Гст, легко разбиваются от удара молотком. [c.410]

    Вынужденная эластичность полимерных стекол. Характерной особенностью полимерных стекол с жесткими цепями является рыхлость структуры и принципиальная возможность движения нефиксированных звеньев даже в стеклообразном состоянии. Этим объясняется пониженная хрупкость подобных стекол по сравнению с низкомолекулярными, где небольшие молекулы могут взаимно перемещаться только как одно целое н где всякое заметное возрастание расстояния между макромолекулами или другими структурными элементами, превышающее границы межмолеку-лярного взаимодействия, означает, по существу, начало разделения образца на его составные части, его разрушение. Хрупкость обусловлена не столько пониженной прочностью материала, сколько неспособностью его даже к малым деформациям у эластичного каучука разрушающее напряжение даже ниже, чем у хрупкого силикатного стекла. [c.411]

    Рассматривая влияние пластификаторов, Ю. С. Лазуркин отмечает [547], что пластификатор, снижая температуру размягчения, одновременно понижает предел вынужденной эластичности. При этом температура хрупкости (например, для поливинилхлорида и полиметилметакрилата) изменяется очень мало или не изменяется вовсе, что связано с сильным уменьшением Ор хрупкого разрушения. В результате этого интервал вынужденной эластичности с увеличением концентрации пластификатора непрерывно сужается, и в пределе пластифицированный полимер по своему поведению в твердом состоянии приближается к низкомолекулярным стеклам. Естественно, что при высоких температурах благодаря высокоэластическим свойствам такие материалы резко отличаются от низкомолекулярных твердых тел. [c.211]

    Выводы о преимущественной адсорбции макромолекул различного молекулярного веса делаются чаще всего на основании измерений вязкости раствора над адсорбентом. Подробно это изучено по адсорбции двух различных фракций поливинилацетата на стекле [130]. Экспериментальная зависимость изменения вязкости и степени покрытия поверхности сравнена с теоретической. Для теоретического рассмотрения взяты четыре случая адсорбируется только высокомолекулярная фракция адсорбируется только низкомолекулярная фракция идет адсорбция равных чисел молекул той и другой фракций адсорбируются фракции одинакового веса. Рассматривается зависимость т)[ от степени покрытия поверхности 0 для раствора, содержащего две фракции с молекулярным весом и М . [c.63]

    Некоторые из выведенных уравнений были применены к экспериментальным результатам по адсорбции поливинилацетата на стекле [1301. Экспериментально исследовано два случая адсорбция из растворов с равными весовыми количествами обоих фракций поливинилацетата и адсорбция из смеси эквивалентного числа молекул. Проведенное сравнение экспериментальных и теоретических кривых зависимости 1т] от0 показало, что при равных весовых количествах (т)] падает с ростом адсорбции. Из сопоставления с теоретически ми кривыми следует, что на основании падения [т] нельзя делать вывод о предпочтительной адсорбции высокомолекулярной фракции. При адсорбции из смеси эквивалентного числа молекул поливинилацетата двух фракций (т)] мало зависит от 0, следовательно, здесь нет предпочтительной адсорбции низко- или высокомолекулярных фракций. Адсорбция в данной системе протекает независимо от молекулярного веса, т. е. нет фракционной адсорбции, и лишь при определенной степени покрытия несколько возрастает адсорбция низкомолекулярных фракций вследствие большой скорости диффузии. [c.64]


    НИЮ без кристаллизации (например, глицерин). Область высокоэластического состояния у низкомолекулярных веществ обычно мала, часто практически незаметна. У чистых аморфных.полимеров все три состояния — вязкотекучее (выше точки Г/), высокоэластическое (между точками Tf и Tg) и стеклообразное (ниже точки Tg) — обычно легко реализуются и имеют хотя и несколько размытые, но вполне отчетливые границы. Гомогенные смеси (истинные растворы) полимера с растворителем также могут находиться во всех трех состояниях. Обычно как температура текучести Tf, так и температура стеклования Tg представляют собой непрерывные функции состава гомогенной системы полимер—растворитель. На диаграмме состав—температура можно различить три области а — вязко-текучие растворы (выше Tf), Ь — высокоэластичные растворы (между Tf и Tg), с — стекло- [c.29]

    Сорбат всегда оказывает влияние на сорбент. Даже на поверхности стекла при взаимодействии с водой образуется гель-слой известно также, что силикагель и другие материалы частично набухают при поглощении влаги. Тем более это относится к набухающим сорбентам. Набухание в процессе поглощения вещества не учитывается в современных теориях сорбции. Если при сорбции на поверхности аморфного или кристаллического тела акт адсорбции молекул газа или пара не вызывает значительных изменений микроструктуры твердого тела вследствие высокой энергии взаимодействия молекул или ионов, из которых состоит это тело, то акт сорбции низкомолекулярных веществ может существенно изменять подвижность звеньев макромолекул и, следовательно, микроструктуру высокомолекулярного соединения [14—18]. [c.68]

    Детальные исследования большого числа органиче ских стеклующихся жидкостей, включая низкомолекулярные полимеры, показали , что они также характеризуются узким (хотя и не максвелловским) спектром распределения времен релаксации. Количественное представление об этом эмпирически найденном спектре можно составить, если воспользоваться получаемыми на основании расчетов по этому спектру частотными зависимостями компонент комплексной податливости и модуля упругости. Эти зависимости имеют вид [c.271]

    Даже в стеклующихся низкомолекулярных жидкостях заморозить структуру (т. е. зафиксировать степень порядка, сведя до минимума молекулярное движение) выше Тс не представляется возможным именно из-за малой вязкости. С позиций" термокинетики это означает пренебрежимость поправкой (см. Введение, [c.89]

    Твердые аещества в аморфном состоянии получают обычно быстрым охлаждением расплавов кристаллических веществ, например 5102 и т. п. Аналогичным путем ведут себя многие силикаты, которые при охлаждении образуют обычное стекло. Причина подобного явления связана с тем, что скорость затвердевания здесь значительно больше, чем скорость кристаллизации. Вместе с тем во многих случаях скорость кристаллизации настолько велика, что за счет ускорения охлаждения аморфное состояние получить нельзя В природе большинство твердых веществ находится в кристаллическом состоянии, в-аморфном состоянии встречаются янтарь, смолы, природные битумы и некоторые другие. В аморфном состоянии могут находиться как низкомолекулярные, так и высокомолекулярные соединения. [c.139]

    Полимеры в стеклообразном состоянии обладают прочностью твердых тел если прилолсить значительную силу (при сжатии, растял ении, изгибе), они деформируются незначительно. Это объясняется тем, что в стеклообразном состоянии молекулы связаны наиболее прочно и наименее гибки. В сравнении с низко-молекулярными стеклами полимерные стекла могут несколько изменять свою форму под действием деформирующих усилий. Объясняется это тем, что часть звеньев сохраняет подвил<ность при наличии прочной связи на многих других участках макромолекулы. Низкомолекулярные стекла разрушаются без деформации или претерпевая едва заметную деформацию. В этом легко убедиться, если сравнить свойства органического стекла (поли-метилметакрилата) с обыкновенным (силикатным) стеклом. Чем нил<е температура в области стеклообразного состояния, тем меньшее число звеньев обладает подвилсностью, и при определенной температуре, называемой температурой хрупкости, полимерные стекла разрушаются без деформации, подобно низкомолекулярным стеклам. Более хрупки в равных температурных условиях стеклообразные полимеры, построенные из глобулярных частиц. Глобулярные молекулы теряют подвижность в целом, подобно молекулам низкомолекулярных соединений, и полимеры глобулярного строения раскалываются по линии раздела глобулярных частиц. Весьма валено поэтому в процессе переработки полимеров преобразовать глобулярную структуру в фибриллярную, что удается, например, при переработке поливинилхлорида. [c.17]

    Пластическим разрушением называется разрушение, которому Предшествуют деформации, обусловленные перегруппировкой от-дедьны.х элементов структуры тела. В кристаллических телах п низкомолекулярных стеклах эти деформации необратимы и носят название пластического течения. [c.208]

    Явление вынужденной эластичности. Для стеклообразггого состояния полимеров характерны малые величины деформации при небольших напряжениях Однако в отличие от простых низкомолекулярных стекол (канифоль, силикатное стекло и т. п ) стеклообразные полимеры сохраняют в некотором интервале температур способность подвергаться при приложении больших ус]1лий значи-те.1ьным деформациям, достигающим иногда сотен процентов. [c.209]

    Стеклообразное состояние. Стеклообразное состояние аморфного вещества связано с потерей подвижности молекул. При понижеиии температуры умень-И1ается тепловая энергия молекул и они, в конце концов, оказываются зафиксированными силами межмолекулярного взаимодействия. Уменьщение подвижности молекул низкомолекуляриого вещества приводит и к изменению характера деформации — низкомолекулярным стеклам свойственна только упруга деформация. Следовательно, они являются хрупкими телами. [c.254]

    Окислы двухвалентных металлов (2п0, Mg0, РЬО) реагируют с хлорированным полипропиленом (наиболее предпочтителен полимер с молекулярным весом >20 000 и содержанием хлора >20%) с образованием эластомеров, обладающих прекрасной озоностой-костью. Эту реакцию часто проводят в присутствии меркапто-бензтиазола [72, 78, 80, 81]. Пленки, волокна и формованные изделия из полипропилена можно подвергнуть действию хлора так, чтобы хлорирование проходило лишь в тонком поверхностном слое. Благодаря повышенной полярности хлорированной поверхности улучшается ее способность окрашиваться и воспринимать печать, чернила, лаки, клеи, фотоэмульсию и т. п. [82—85]. Хлорированный полипропилен размягчается легче, чем нехлорированный (рис. 6,4), вследствие чего улучшается его свариваемость. Раствор низкомолекулярного хлорированного полипропилена в смеси с красителями образует несмываемые чернила [86]. Хлорированный полипропилен в чистом виде или в смеси с немодифицированным полипропиленом может быть рекомендован для склеивания металлов, бумаги, стекла, а также поливинилхлорида и поливинилиден-хлорида [87]. Пленки из хлорированного полипропилена применяются в качестве проницаемых мембран [88] с высокой удельной ударной вязкостью при изгибе [69]. Большой интерес представляет галогенирование твердого полипропилена в целях удаления [c.135]

    Низкомолекулярные П. применяют для отверждения эпоксидных смол (как таковые или в виде реакционноспособных полиамидаминов), как сырье для произ-ва аниоио-обменных смол, в качестве беззольных диспергаторов и модификаторов смазочных масел пентаэтиленгексамин-сырье в произ-ве сорбентов для разделения белков. Высокомолекулярные П.-флокулянты для бумажного произ-ва и очистки воды, активные компоненты для алмазного шлифования оптич. стекла, используются в произ-ве влагоупрочняющих смол. [c.47]

    Из П.с. наиб, применение находят полиэтилентерефталат, полибутилентерефталат, алкидные смолы, поликарбонаты, полиарилаты, полиалкиленгликольмалеинаты и полиалкиленгликольфумараты, олигоэфиракрилаты (см. Олигомеры акриловые). Из П.с. получают пленки, волокна, лакокрасочные материалы, орг. стекла, композиц. материалы. Низкомолекулярные П. с. используют в произ-ве полиэфируретанов (см. Полиуретаны) и как пластификаторы. Для получения высокопрочных изделий используют термотропные жидкокристаллические П.с. [c.52]

    Изучение механизмов гелеобразования в кислотных растворах алюмосиликатов подтвердило ряд однотипных черт с механизмом гелеобразования в кислотных растворах жидкого стекла, однако скорость процесса у алюмосиликатов существенно ниже, чем у последних. Ответственен за замедление скорости гелеобразования гидролиз алюмосиликата с образованием реакционпоспособных низкомолекулярных олигомеров кремниевой кислоты. [c.203]

    В основе молекулярно-кинетического рассмогрения диффузии низкомолекулярных веществ в полимере лежит предположение о том, что диффузия — результат последовательных периодических перескоков диффундирующих молекул из одного положения равновесия в другое. Возможность такого перемещения молекул обычно связывают с наличием в полимерной среде свободного объема. Последний представляют как совокупность межмолекулярных промежутков различной формы и размеров В процессе теплового движения в полимере при температуре выше его температуры стекло- [c.22]

    Стеклообразное состояние отличается от жидкого отсутствием релаксационных явлений в течение времени эксперимента и от кристаллического — наличием избыточной энтропии и энтальпии, сохраняющихся постоянными ниже температуры стеклования Характер теплового движения макромолекул ниже температур стеклования изменяется. Если в высокоэластическом состоянии кинетической единицей являлся сегмент, размеры которого определяла степень гибкости молекулы, то в стеклообразном состоянии подвижность в цепи сохраняется лишь на уровне отдельных звеньев. Частичная подвижность звеньев позволяет рассматривать полимерные стекла как более близкие по структуре к жидкости, чем низкомолекулярные стекла Об этом свидетельствуют данные по диэлектрическим свойствам застекло-ванных полимеров 4- , а также значительно более высокие значения коэффициентов диффузии по сравнению с низкомолекулярньши стеклами . Полимеры с более гибкими молекулами в стеклообразном состоянии более плотно упакованы и обладают меньшей способностью к деформации, чем полимеры с жесткими молекулами. Следовательно, полимеры с жесткими молекулами в стеклообразном состоянии упакованы более рыхло и по своим свойствам отличаются от низкомолекулярных сте- [c.123]

    Исследованию газопроницаемости полимеров в стеклообразном состоянии (по сравнению с полимерами в высокоэластическом состоянии) посвяшено относительно небольшое число работ. Полученные данные характеризуются значительным разбросом, что обусловлено малой величиной измеряемых коэффициентов, зависимостью от скорости охлаждения (закалки), различной плотностью структуры, возможным появлением микротрещин (ниже Тхр) и рядом других причин. Еще меньше достоверных результатов имеется по коэффициентам диффузии и растворимости в полимерных стеклах газов и других низкомолекулярных веществ. По-видимому, [c.124]

    Вещество, находящееся в жидком агрегатном состоянии, может переходить в ткердое агрегатное состояние (отвердевать) двумя путями либо изменяя фазовое состояние и образуя кристаллическую рещетку (кристаллизация), либо не изменяя фазового состояния (оставаясь структурно жидким) и переходя в стеклообразное состояние (стеклование). Стеклообразными (стеклами) называют вещества твердые по агрегатному состоянию, но аморфные по фазовому. И жидкости, и стеклообразные вещества находятся в одном и том же фазовом состоянии - аморфном. Следует заметить, что стеклообразное состояние (твердое аморфное вещество) для низкомолекулярных соединений нетипично, рассматривается как переохлажденная жидкость и встречается сравнительно редко (например, силикатные стекла, канифоль). [c.132]

    По электронно-микроскопическим данным [55—57], слон ап-фетов, нанесенные из водных растворов, не образуют на поверхности стекла равнотолщинной сплощной пленки, а состоят из отдельных глобул, занимающих только часть поверхности. После экстракции водой размеры этих глобул заметно умень-щаются. Это свидетельствует о том, что глобулы содержат низкомолекулярные полимеры, растворимые в воде. В работе [58] показано, что на поверхности стеклянных волокон активные этоксисиланы обычно не образуют сильно сшитых полпмеров, т. е. процесс конденсации не проходит до конца и образуются низкомолекулярные полимеры с больщим числом реакционно- способных групп. Они в заметной степени сохраняют раствори-юсть в органических растворителях и в воде, Одиако некото-)ая часть этих соедггнений необратимо связывается со стеклом при экстракции активными растворителями с поверхности не удаляется. Это может происходить как в результате хемосорб-ции молекул триэтоксисиланов, так и за счет других процессов, таких, например, как образование на поверхности нерастворимого трехмерного полимера. [c.221]

    Обычно полимеризуется в смеси с винилхлоридом, давая сополимеры Низкомолекулярные полимеры используются в качестве высокотемпературных масел высокомолекулярные полимеры используются как химически инертные прокладки Прокладки, химически устойчивые детали, электроизоляция Часовые линзы, контактные лиизы, авиационные стекла [c.227]

    Рассмотренные до сих пор низкомолекулярные вещества образуют нормальные стекла, для которых характерен сравнительно небольшой интервал размягчения, охватьГвающий 20—50 . К подобным стеклам относятся низкомолекулярные полимеры глобулярной структуры (канифоль, пеки, новолаки). Ниже Та такие полимеры отличаются хрупкостью и разрушаются до достижения предела упругости выше Тст они ведут себя как упруговязкие тела, у которых диаграмма растяжения состоит из линейного участка, отвечающего упругой деформации, и нелинейной части, соответствующей пластической деформации. [c.408]

    Снижение серебростойкости стекла под влиянием влаги зависит от содержания в нем низкомолекулярных веществ. Чем больше содержание таких веществ, тем более резко снижается серебростойкость стекла. Даже при весьма длительном воздействии воды или среды с высокой относительной влажностью на органическое стекло (4—6 и более месяцев) epeJgpo не возникает на стекле со сравнительно невысоким содержанием низкомолекулярных веществ (1—2%). [c.224]

    В ряде работ отмечается увеличение адсорбции с ростом молекулярного веса полимера. Установлено П091, что адсорбция нитроцеллюлозы на крахмале из различных растворителей увеличивается с ростом молекулярного веса полимера. Полиэтилеигликоль малых молекулярных весов (от 300 идо 6000) адсорбируется на угле из водных растворов в большей степени с ростом молекулярного веса [901. Адсорбция низкомолекулярных полиэфиров на стекле и кремнеземе также увеличивается с ростом молекулярного веса [73]. Интересно, что при равных молекулярных весах адсорбция ненасыщенного полиэфира в четыре-пять раз выше, чем насыщенного [122]. [c.54]

    Интерпретация аналогичных опытов еще более затрудняется, если дополнительно учитывать влияние структуры пор и необратимость адсорбции. Так, при исследовании преимущественной адсорбции низкомолекулярных полимеров [1271, а также при фракционировании [85], очевидно, определенную роль играли кинетические аффекты, обусловленные величиной пор. При адсорбции полиметилсилоксана на железе и стекле Перкель и Ульман [54] установили преимущественную адсорбцию низкомолекулярных фракций, хотя адсорбированное количество увеличивается с повышением молекулярного веса. Поскольку система в значительной мере необратима, преимущественная адсорбция обусловлена тем, что низкомолекулярная фракция быстрее мигрирует к поверхности,необратимо сорбируется на ней и не вытесняется более высокомолекулярной фракцией Возможно, преимущественная адсорбция низкомолекулярных фракций ацетата целлюлозы [129] и поливинилацетата [89] на угле обусловлена необратимостью адсорбции. [c.63]

    Низкомолекулярньге олефины — этилен, пропилен, 1-бутен и 1-пентен — являются исходным сырьем для промышленности органического синтеза, в частности для получения полимерных материалов полиэтилена, полипропилена, стирола, синтетических волокон, пластических масс, органического стекла и т. п. Возрастающая потребность промышленности в олефинах требует разработки теории и практики эиономически выгодных способов их получения из природных и попутных газов. Для установления этих критериев необходимо прежде всего рассмотреть термодинамические характеристики процессов получения низкомолекулярных олефинов из предельных углеводородов. [c.168]

    Криоскоп для нестабильных веществ был предложен Глазговым и Тененбаумом [60]. Они применяли его для определения молекулярного веса низкомолекулярных веществ. Все поверхности, с которыми соприкасается образец, изготовлены либо из боросиликатного стекла, либо из благородных металлов. Аппарат Глазгова и Тененбаума может быть применен и для определения молекулярных весов полимеров. Однако в последнем случае необходимо применять более чувствительные элементы для измерения температуры замерзания растворов полимеров. [c.243]


Смотреть страницы где упоминается термин Стекла низкомолекулярные: [c.256]    [c.156]    [c.254]    [c.106]    [c.46]    [c.21]    [c.21]    [c.224]    [c.147]    [c.176]   
Физическая химия силикатов (1962) -- [ c.321 ]

Структура и механические свойства полимеров Изд 2 (1972) -- [ c.134 ]

Высокомолекулярные соединения Издание 2 (1971) -- [ c.307 ]




ПОИСК







© 2024 chem21.info Реклама на сайте