Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

механические с хромом и никелем

    Устойчивыми к коррозии являются нержавеющие стали, содержащие, кроме железа, хром, никель, марганец и малые добавки титана и ниобия. На изделиях из таких сплавов под действием воздуха и воды возникает химически и механически арочная окисная пленка, которая полностью пассивирует металл. [c.640]

    По составу нержавеющие стали делятся иа хромистые и хромоникелевые. Кроме основных элементов (углерода, хрома, никеля) нержавеющие стали могут быть дополнительно легированы молибденом, титаном, ниобием, медью, кремнием, которые вводят в сталь для повышения ее коррозионной стойкости, механических и технологических свойств. [c.41]


    Коррозионную стойкость сталей, а также их длительную прочность повышают добавлением ири плавке легирующих элементов. В качестве легирующих элементов применяют хром, никель, молибден, титан и т. д. Наличие их в стали в различных сочетаниях и количествах позволяет придать ей требуемые физи-ко-механические свойства, в том числе высокую сопротивляемость коррозии в агрессивных средах при различных температурах. [c.22]

    По составу нержавеющие стали делятся на хромистые и хромоникелевые. Кроме основных элементов (углерода, хрома, никеля) нержавеющие стали могут быть дополнительно легированы молибденом, титаном, ниобием, медью, кремнием, которые вводят для повышения коррозионной стойкости, механических и технологических свойств стали. Нержавеющие стали бывают нескольких структурных классов ферритного, ферритно-мартенситного, мартенситного, аустенит- [c.31]

    Легирование придает сталям повышенную коррозионную стойкость, улучшает их механические характеристики и т. д. Стали легируют хромом, никелем, молибденом, кремнием и другими элементами. Увеличивая содержание в стали хрома более 12%, никеля - до 10 % и молибдена до 3-5 %, т. е. превращая сталь в нержавеющую, при одновременной оптимальной ее термообработке, удается существенно повысить сопротивление стали коррозионной усталости [18, 71]. В то же время введение в малоуглеродистые стали только одного никеля снижает их сопротивление растрескиванию в хлоридных средах [8]. [c.119]

    Черные металлы — чугун и сталь, занимая исключительно важное место в промышленности и технике, часто служат объектом анализа. Число элементов, которое может находиться в железных сплавах, очень велико, чем и определяется большое разнообразие их физико-механических и химических свойств. Наряду с давно применяемыми легирующими элементами (такими, как хром, никель, кобальт, ванадий, вольфрам), в практику черной металлургии и в последние десятилетия вошли новые компоненты (например, редкоземельные, цирконий, гафний, титан, тантал, ниобий), добавки которых позволяют получать черные металлы с еще более ценными качествами. Кроме того, растет внимание и к ряду элементов, присутствие которых даже в малых количествах, может существенно изменять качество металла. Сюда относятся мышьяк, медь, олово, сурьма, алюминий, цинк и др. Содержание этих компонентов также контролируется, особенно в высококачественных сталях. [c.473]

    В топливах содержатся микрозагрязнения обычно в виде механических примесей с частицами размером 1—100 мкм, служащих причиной повышенного износа деталей двигателей и засорения топливных фильтров (табл. 32, 33). В топливах обнаруживаются в заметных количествах не только распространенные элементы, но и такие сравнительно редкие металлы, как хром, никель и др. (табл. 34). [c.144]


    Легированный чугун, кроме обычных элементов (Сг, 81, Мп, 8 и Р), содержит специально введенные элементы для повышения механических свойств или для придания каких-либо специальных свойств износоустойчивости, жаропрочности, кислотоупорности и др. При легировании чугуна применяются те же элементы, что и при легировании стали (хром, никель, медь, титан, молибден и др.). Чугун с повышенным содержанием кремния (выше 4%) и марганца (свыше 2%) относится также к легированному чугуну. В зависимости от степени легирования различают низколегированный (с содержанием легирующих элементов до 1—3%), среднелегированный (3— 10%) и высоколегированный чугун (свыше 10%), [c.158]

    По сравнению с другими методами нанесения покрытий металлами (горячим, термодиффузионным, распыления и др.) электроосаждение имеет ряд преимуществ и позволяет регулировать толщину слоя, экономно расходовать цветные металлы, получать покрытия с необходимыми физико-химическими и механическими свойствами. Этот метод незаменим при покрытии металлами с высокой температурой плавления, такими, как хром, никель, медь, серебро, платина, железо. [c.111]

    Для изготовления машин, аппаратов, трубопроводов, запорной и крепежной арматуры, работающих при высоком давлении, применяются высококачественные легированные стали, т. е. стали, содержащие легирующие добавки — хром, никель, вольфрам, ванадий, титан и др. Легирующие металлы улучшают механические свойства стали, изменяют ее физические и химические свойства. [c.213]

    Высокая коррозионная стойкость нержавеющих сталей основана на явлении пассивности. Пассивность — это состояние высокой коррозионной стойкости металла или сп.пава (в условиях, когда с термодинамической точки зрения они являются вполне реакционноспособными), вызванное избирательным торможением анодного процесса. Пассивность нержавеющих сталей зависит от содержания в них хрома как основного легирующего элемента. Наименьшее содержание хрома, обеспечивающее сталям пассивное состояние, практически составляет 12%. С увеличением содержания хрома коррозионная стойкость сталей в окислительных средах резко возрастает. Для придания высокой устойчивости нержавеющие стали легируют хромом, никелем и молибденом, а также медью, ниобием и другими элементами, повышающими пассивность и улучшающими физико-механические характеристики сталей. [c.327]

    Хромо-никелевые стали. Хромо-никелевые стали обладают значительно более высокой химической стойкостью по сравнению с хромистыми сталями и поэтому за последнее I время получили весьма широкое распространение з химической промышленности. Хромо-никелевые стали представляют собой твердый раствор хрома, никеля и небольшого количества углерода в железе. Из многочисленных марок хромо-никелевых сталей наибольшую известность получила марка стали, содержащая 18% хрома и 8% никеля, коротко называемая сталь 18-8 . Эта сталь обладает высокой г стойкостью к азотной кислоте (за исключением дымящейся [ кислоты при температуре кипения), а поэтому широко применяется в производстве этой кислоты, а также при ее хранении и транспортировке, К холодной серной кислоте любой концентрации сталь 18-8 также достаточно стойка. Холодные органические кислоты, например уксусная, мало действуют на сталь 18-8, однако крепкие кипящие кислоты ее заметно разрушают. К растворам солей сталь 18-8 значительно более стойка по сравнению с обычной и нержавеющей сталью. По своим механическим свойствам сталь 18-8 близка к обычной закаленной стали, причем она обладает свойством самозакалки, т. е. сохраняет свойства зака- ленной стали даже при медленном охлаждении. [c.29]

    По механическим свойствам высокопрочный чугун, модифицированный магнием, превзошел лучшие сорта легированных (хромом, никелем и молибденом) чугунов с пластинчатым графитом, поэтому многие заводы изготовляют из этого чугуна ответственные детали, работающие при знакопеременных напряжениях. [c.237]

    Специальные элементы вводятся в сталь для придания ей определенных физико-механических свойств. К этим элементам относятся хром, никель, молибден, вольфрам, титан, кремний (при его содержании более 0,50/,), марганец при его содержании более 1%, медь, бор и др. Специальные элементы вводятся в сталь как в отдельности, так и в различных сочетаниях друг с другом, обусловливая тем самым получение необходимых физико-механических свойств. В зависимости от способа выплавки качественные легированные стали подразделяются на две группы 1) сталь качественную и 2) сталь высококачественную. [c.167]

    Твердость, прочность и износостойкость являются основными свойствами, не обязательно взаимосвязанными. Например, при трении между двумя поверхностями твердых металлов может быть более высокая износостойкость, чем износостойкость между двумя поверхностями мягких металлов. В общем случае контакт при трении между твердым и мягким металлом приводит л износу более мягкого металла. Однако механические факторы реальной конструкции могут менять это взаимоотношение по износостойкости, так что износ более твердых материалов происходит в более широких пределах, например случай быстрого износа, патефонной иглы при трении ее о виниловую поверхность. В общем, самыми твердыми являются покрытия хромом, никелем и родием железо, медь, цинк, кадмий и серебро относятся к группе со средней твердостью олово, свинец, золото и индий являются относительно мягкими. [c.397]


    Для данной реакции известно много катализаторов окислы железа, хрома, никеля, кобальта, марганца, цинка, магния, ванадия и др. К промышленным катализаторам предъявляются следующие основные требования температура начала реакции должна быть возможно ниже при достаточно высокой активности и избирательности, т. е. при минимальном избытке водяного пара производительность катализатора должна быть высокой и не должны протекать побочные реакции катализатор должен быть долговечен, т. е. должен длительно сохранять активность при работе в промышленных условиях и е разрушаться механически. [c.270]

    Из приведенных данных видно, что добавка таких металлов, как хром, никель, ванадий и молибден повышает механические свойства сталей и их стойкость при сравнительно высоких температурах. [c.479]

    Чтобы обычные железоуглеродистые сплавы были коррозионностойкими в агрессивных средах и жаростойкими при высоких температурах, железоуглеродистые стали легируют хромом, никелем, молибденом, кремнием, алюминием и другими элементами. Выбор легирующих элементов определяется эксплуатационными условиями конструкции, для которой предназначается сплав. Например, хром наиболее часто применяют как легирующий элемент для создания коррозионностойких и жаростойких сплавов на железной основе. Никель обеспечивает высокие механические и технологические свойства сплавов и повышает также их коррозионную стойкость в едких щелочах, расплавах солей и др. [c.5]

    Стали группы А поставляются по механическим свойствам и химический состав их не нормируется, однако в случае использования этих сталей для изготовления сварных конструкций необходимо при заказе оговаривать содержание хрома, никеля, меди, серы и фосфора в пределах не выше, чем для сталей подгруппы В. [c.73]

    Механические свойства чугуна значительно улучшаются в результате обработки его во время плавки модифицирующими присадками. Присадки в значительной степени улучшают структуру чугуна, размельчая и распределяя графит равномерно по объему отливки. Полученный в результате такой обработки модифицированный чугун используют главным образом для изготовления ответственных деталей, например корпусов насосов, арматуры и др. Добавки хрома, меди, никеля, молибдена значительно улучшают качество чугуна. [c.17]

    Наличие пассивных пленок, образующихся в атмосфере иа поверхности таких металлов, как алюминий, титан, хром, никель, значительно повышает их коррозионную стойкость. Защитная способность этих пленок зависит от их сплошности и электронной проводимости. Пассивные пленки наносят искусственно на такие металлы, как алюминий, железо ( воронение железа), медь, магний. Такие искусственно созданные пленки по сравнению с пленками, образующимися в естественных условиях, имеют значительно большую толщину и обладают большей механической и противокоррозионной стойкостью. При нарушении сплошности пассивных пленок, обладающих электронной проводимостью, в их поры (трещины) может попасть влага. В результате образуется мккрогальвано-элемент металл —пленка (рис. 89). Пленка играет роль катода, ускоряя коррозию. Поэтому после формирования пленок металл обрабатывают в специальных средах. Например, оксидированное ( вороненое ) железо обрабатывают в минеральном [c.374]

    Практический интерес представляют собой сплавы циркония с алюминием и оловом, имеющие а-структуру. Сплавы с алюминием наиболее прочные из всех сплавов циркония, но меньше сопротивляются окислению, чем чистый цирконий. Сплавы с оловом (до 2,5%) и небольшими добавками железа (до 0,25%), хрома, никеля и др.( цир-калой) при хороших механических свойствах обладают очень высокой коррозионной стойкостью [14, 16]. [c.302]

    Легированный чугун, кроме обычных элементов (Сг, 81, Мп, 5 и Р), содержит специально введенные элементы для повышения механических свойств или для придания каких-либо специальных свойств (износоустойчивости, жаропрочности, кислотоупорности и др.). При легировании чугуна применяются те же элементы, что и ири легировании стали (хром, никель, медь, титан, молибден и др.). Чугун с повыщенныы содерлганием кремния (выше 4%) и [c.135]

    Важным признаком коррозионной усталости является практически полное отсутствие связи между механическими характеристиками при статическом и циклическом нагружеииях в воздухе и условным пределам коррозионной усталости. Прямой связи нет и между коррозионной усталостью и коррознопио 1 стойкостью металлов в ненапряженном состоянии. Легирование сталей хромом, никелем и другими элементами (ие переводя их в класс коррозионно-стойких сталей) на несколько порядков повышает их коррозионную стойкость в нейтральных электролитах, но пе оказывает существенного влияния на коррозионно-усталостную прочность [481. Обыч1ю более прочные металлы (структуры) в большей степени подвержены коррозионной усталости (см. рис. 27). При коррозионной усталости термическая обработка не дает повышения усталостной прочности. [c.81]

    Применение. РЗЭ широко применяются в металлургии в качестве раскислителей, дегазаторов и десульфаторов. Введение долей процента мишметалла (52 % Се, 24 % La, 5 % Рг, 18 % Nd и др.) в стали различных марок способствует их очищению от примесей, повышает жаропрочность и сопротивление корро-зи. Сплавы S , легкие и обладающие высокой температурой плавления, служат конструкционными материалами в ракето-и самолетостроении. Сплавы Се с железом, магнием и алюминием отличаются малым коэффициентом расширения и используются в машиностроении при производстве деталей поршневых двигателей. Присадка РЗЭ к чугунам улучшает их механические свойства добавка РЗЭ к сплавам из хрома, никеля и железа практикуется в производстве нагревательных элементов промышленных электропечей. РЗЭ применяются также при изготовлении регулирующих стержней, поглощающих избыточные тепловые нейтроны в ядерных реакторах Gd, Sm, Eu имеют аномально высокие значения сечения захвата нейтронов. Соединения S используются при изготовлении люминофоров, в качестве катализаторов в химической промышленности, в химической технологии ядерного топлива, в нефтеперерабатывающей промышленности для получения катализаторов крекинга нефти, для производства синтетических волокон, пластмасс, для синтеза жидких углеводородов, в цветной металлургии. РЗЭ употребляются для полировки стекла (в виде полирита, состоящего из оксидов Се, La, Nd и Рг), в силикатной промышленности для окрашивания и обесцвечивания стекол, для производства химически- и жаростойких, оптических, устойчивых к рентгеновскому облучению, высокоэлектропроводных и высокопрочных стекол, для окраски фарфора и керамики. рЗЭ применяются также в светотехнике, электронике, радиотехнике, в текстильной и кожевенной промышленности, в производстве ЭВМ, в медицине, рентгенотехнике и т. д. [c.253]

    Металл отливок должен содержать не более 0,3% хрома, никеля и меди (каждого элемента). Механические свойства металла отливок с толщиной стенки <100 мм после нормализации или нормализации с отпуском должны соответствовать нормам, указанным в табл. 2.80. Нормы механических свойств Для более толстостенных отливок устанавливаются по соглашению между изготовителем и потребителем. Механические свойства металла изготовитель пров р йет в каждой партии отливок проверку осуществляют на пробных литых брусках. При неудовлетворительных результатах механических испытаний проводят переиспытанйё [c.95]

    Понижение механических свойств при высоких температурах )бъясняется структурными и фазовыми превращениями, происходящими в металле, в связи с чем для работы аппаратов при высоких температурах требуются специально жаропрочные сорта стали с достаточно высокой механической прочностью при повышенных температурах, в частности с высоким сопротивлением ползучести. Наряду с жаропрочностью металлы, работающие при высоких температурах, должны обладать жаростойкостью —способностью сопротивления химическому разрушению поверхности под действием горячих газов или воздуха. Обычно в состав жаростойких сталей вводят легирующие элементы — кремний, алюминий, хром и др.,в состав жаропрочных сталей — молибден, вольфрам, ванадий, хром, никель, кобальт и др. [c.10]

    Большое значение в современной технике имеют легированные стали, содержащие так называемые легирующие элементы, к которым относятся хром, никель, молибден, ванадий, вольфрам, марганец, медь, кремний и др. Легирующие элементы добавляются для придания стали определенных свойств. Так, хромоникелевые стали, содержащие, помимо неизбежных примесей, хром и никель, обладают высокими механическими и антикоррозионными свойствами, а также жаростойкостью. Из них изготовляют многие части машин и предметы домашнего обихода (нержавеющие ложки, ножи, вилки и др.). Хромомолибденовые и хромованадиевые стали тверды и прочны при повышенных температурах и давлениях. Из них изготовляют трубопроводы, детали авиационных моторов и компрессоров. Из хромовольфрамовых сталей делают режущие инструменты. Марганцевистые стали весьма устойчивы к трению и удару. Из них изготовляют камнедробильные машины, железнодорожные скаты, стрелки. [c.472]

    Легированная сталь. Это качественная сталь, к которой в целях придания ей требуемых свойств добавлены легирующие элементы. Природнолегированными считаются стали, получаемые при переплавке чугунов, выплавленных из железных руд (например Халиловского месторождения), содержащих легирующие элементы — хром, никель и др. Такие стали обладают, в сравнении с углеродистыми, более высокими механическими свойствами.  [c.12]

    Фирма Дженерал Электрик выпускает прозрачные покрытия для электрических лампочек. Такое покрытие пропускает более 95% светового потока и препятствует разлетанию осколков при поломке выдерживает действие льда, снега, дождя, искр и т. п. Оно хорошо соединяется с шеллачными, нитроцеллюлозными, перхлор-вини ловыми покрытиями [662]. Отечественный компаунд КЛТ-50 достаточно надежно прикрепляется к стеклянным, эмалевым, силикатным покрытиям, фарфоровым частям электроприборов [663]. С применением подслоя К-100 адгезия к стали, алюминию, меди, бронзе, титану, хрому, никелю, олову, свинцу, органическому стеклу, капрону, графиту и другим конструкционным материалам заметно улучшается. Заливочный двухкомпонентный компаунд КЛСЕ успешно применяется для изоляции паяных соединений обмоток, роторов и статоров, электрогенераторов корпусов электрических машин. Его используют также для заливки статорных обмоток электродвигателей А-81-4, применяемых для насосов маслонапорных установок. Указанный компаунд с успехом заменил такой традиционный изоляционный материал, как слюда. Он более технологичен, уменьшает температурный перепад в изоляции, обладает хорошими механическими и диэлектричоскйми свойствами. [c.76]

    Так как кристаллизация в вертикальном положении создает неодинаковые условия затвердевания металла по длине вала, структура и механические свойства образцов, вырезанных с противоположных концов вала, также неодинаковы. Нижний конец вала затвердевает быстрее, верхний, имеющий прибыль, остывает медленнее, и поэтому его структура отличается большим содерл анием феррита и более крупным строением графита по сравнению с графитом нижнего конца вала. Учитывая неоднородность структуры, получаемой непосредственно при отливке, валы подвергаются термической обработке (нормацизации) по следующему режиму нагрев до 860—880° с выдержкой в течение 6—8 час., охлаждение с печью до 760—780°, дальнейшее охлаждение на воздухе. Для снятия термических напряжений валы подвергаются отпуску прн температуре 500—550°. Однако термическая обработка не устраняет полностью неоднородности структуры и значений механических свойств коленчатого вала. В различных концах вала получаются хотя и неодинаковые механическпе свойства, но по своему значению они выше требований ТУ на чугун для коленчатых валов. Раньше коленчатые валы тепловозов отливались из чугуна марки ХНМ (содержащего дефицитные и дорогие присадки хрома, никеля и молибдена), механические свойства которого значительно ниже, чем высокопрочного чугуна с шаровидным графитом. Можно отмстить, что влияние прибыли от верхнего конца распространяется около 10%. [c.233]

    Для двухслойных сталей с плакирующим слоем из нержавеющих сталей аустенитного класса марок Х18Н10Т и Х17Н13М2Т особое значение имеет содержание углерода, хрома, никеля, молибдена и титана. Добавка никеля в систему Ре—Сг вносит значительные изменения в структуру сплава и влияет на его физико-механические и коррозионные свойства. Добавка к железу никеля способствует образованию сплавов с неограниченной аустенитной областью. [c.150]

    Раствор, после удаления из него электролизом с ртутным и атодом железа, а также хрома, никеля, кобальта и частично марганца, если они присутствовали, фильтруют (от механического загрязнения частичками амальгамы), после чего приступают к 0саждеп 0 алюминия аммиаком. Для этого раствор выпарива 0т до небольшого объема (50 мл), прибавляют 2—3 г хлористого аммония (или эквивалентное количество соляной кислоты), нагревают почти до кипения, прил1 вают 1 каплю И1 дикатора —метилового крас Юго и нейтрализуют 10%-ным перегнанным аммиах ом до исчезновения розовой окраски ин-дх катора. [c.59]

    Конструкция вентиля Р 45 предусматривает возможность подъе.ма и опускания штока вручную без применения сжатого воздуха в мембранном механизме. Корпус и детали вентиля, соприкасающиеся с хлором, изготавливают из конструкционных материалов, обладающих высокими механическими качествами и устойчивостью к агрессивному воздействию хлора (хастеллой С , нержавеющая сталь с высоким содержанием хрома, никеля, молибдена и титана, политетрафторэтилен и др.) [c.121]


Смотреть страницы где упоминается термин механические с хромом и никелем: [c.215]    [c.316]    [c.10]    [c.215]    [c.150]    [c.48]    [c.469]    [c.814]    [c.127]   
Коррозия металлов Книга 1,2 (1952) -- [ c.0 ]

Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Груздева, А. С. Адамова. Влияние железа, никеля и хрома на коррозионные и механические свойства сплавов цирконий — молибден — ниобий и цирконий — мель — олово

Груздева, Т. Н. Загорская, И. И. Раевский. Влияние малых добавок меди, никеля и хрома на коррозионные и механические свойства сплавов системы цирконий — железо — ниобий

Пятницкий, И. А. Трегубое. Влияние железа, никеля и хрома на коррозионную стойкость и механические свойства сплавов системы цирконий — медь — молибден



© 2025 chem21.info Реклама на сайте