Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочи полиэтилен

    Полиэтилен высокого давления отличается большой химической стойкостью к действию концентрированных кислот и щелочей. Полиэтилен — это термопластичный материал кристаллического строения. [c.89]

    Установка включает кислотный насос, кислотный бак, емкость для сбора продуктов очистки, систему нейтрализации отработанной кислоты и централизованную разводку трубопроводов, футерованных полиэтиленом, к каждому компрессору. Обработка водяных полостей циркулирующим раствором кислоты повыщает эффективность очистки, обеспечивает более безопасные условия работы ремонтного персонала. После очистки для предотвращения коррозии производится нейтрализация отработанной кислоты. Для этого раствор щелочи тем же насосом подается в систему циркуляции. Последняя операция — промывка системы водой. Специальная централизованная установка очистки позволяет на всех этапах работы контролировать концентрацию кислотного раствора, качество нейтрализации. [c.336]


    Производство полиэтилена. Полиэтилен—один из самых распространенных полимерных материалов, находящий широкое применение как в промышленности и сельском хозяйстве, так и в быту. Полиэтилен имеет уникальные физические и химические свойства температура плавления 100—125°С, устойчив к действию концентрированных щелочей и кислот, высокая-эластичность даже при низких температурах примерно минус 50—60Х, абсолютная негигроскопичность, очень высокие диэлектрические свойства и сравнительно малая газопроницаемость пленок. [c.319]

    Полиизобутилен обладает высокой химической стойкостью и водостойкостью. Он устойчив к действию почти всех кислот, щелочей и галогенов. Концентрированная азотная кислота разрушает его только при температуре выше 80 °С. Полиизобутилен значительно превосходит полиэтилен и полипропилен по эластичности, морозостойкости, и растворимости. Он растворим в. алифатических, арома- [c.14]

    Полиэтилен (-СН2-СНг-)п — карбоцепной термопластичный кристаллический полимер белого цвета со степенью кристалличности при 20°С 0,5—0,9. При нагревании до температуры, близкой к температуре плавления он переходит в аморфное состояние. Макромолекулы полиэтилена (ПЭ) имеют линейное строение с небольшим количеством боковых ответвлений. ПЭ водостоек, не растворяется в органических растворителях, но при температуре выше 70°С набухает и растворяется в ароматических углеводородах и галогенпроизводных углеводородов. Стоек к действию концентрированных кислот и щелочей, однако разрушается при воздействии сильных окислителей. Обладает низкой газо- и паропроницаемостью. Звенья ПЭ неполярны, поэтому он обладает высокими диэлектрическими свойствами и является высокочастотным диэлектриком. Практически безвреден. Может эксплуатироваться при температурах от -70 до 4-бО°С. [c.388]

    Если макромолекула П. состоит из 50—70 молекул этилена, связанных в одну цепочку, то полимер представляет собой жидкость, которая используется как смазочное масло если макромолекула состоит из 100—120 молекул этилена, то полимер — твердое белое вещество если же макромолекула состоит из 1000 и более молекул этилена, получается твердая полупрозрачная, эластичная и прочная пластмасса, га-зываемая полиэтиленом (или полит е-ном). П. стоек при обычных условиях к действию щелочей, кислот и окислителей. Морозостоек, теплостоек, обладает сопротивлением на разрыв, горит бледно-голубым пламенем. П. широко используется в качестве электроизоляционного материала для производства водопроводных труб, предметов домашнего обихода, посуды для хранения и перевозки щелочей и кислот, как упаковочный материал для продуктов питания и др. [c.199]


    По химическому составу полиэтилен отвечает предельным углеводородам. Поэтому он является веществом мало активным и обладает высокой стойкостью по отношению к агрессивным средам (кислотам, щелочам, растворам солей). Он является также очень хорошим диэлектриком. Размягчается в зависимости от способа получения при 105—130 С. [c.202]

    В электротехнике широко используют некоторые полимерные материалы, диэлектрические свойства которых невысокие, но они сочетаются с рядом ценных физических, химических и технологических свойств. Таким материалом является, например, поливинилхлорид. Вследствие несимметричного строения макромолекул и сильной их полярности поливинилхлорид худший диэлектрик, чем полиэтилен и полистирол. Однако такие его ценные свойства, как инертность по отношению к кислотам и щелочам, водостойкость, газонепроницаемость, невоспламеняемость и т. п., способствуют исключительно широкому применению поливинилхлорида для изоляции защитных оболочек кабельных изделий, проводов, для изготовления трубок, листов, лент и т. п. При дополнительном хлорировании поливинилхлорида получают перхлорвиниловый полимер, содержащий 64—65% хлора. Из него производят волокно хлорин, ткани, ленты, лаки, эмали, предохраняющие электроаппаратуру от коррозии. [c.339]

    Химические свойства. Полиэтилен и полипропилен обладают свойствами предельных углеводородов. При обычных условиях эти полимеры не реагируют ни с серной кислотой, ни со щелочами. (Концентрированная (дымящая) азотная кислота разрушает полиэтилен, особенно при нагревании,) Они не обесцвечивают бромную воду и раствор перманганата калия даже при нагревании. [c.27]

    Задания для самостоятельных выводов. 1. Почему полиэтилен не действует на бромную воду и не обесцвечивает раствор перманганата калия 2. Каково отношение полиэтилена к действию кислот и щелочей  [c.37]

    Полипропилен — вещество молочно-белого цвета, один из самых легких полимеров, обладает высокой твердостью, прочностью, устойчивостью к истиранию, термО пластичностью. Полипропилен химически стоек к действию растворителей, кислот и щелочей. Однако по сравнению с полиэтиленом он менее морозостоек. [c.326]

    Из всех известных высокомолекулярных органических пластиков полиэтилен после политетрафторэтилена является наиболее стойким по отношению к растворителям и к большей части химических агрессивных реагентов. Он не изменяется при 20—30° под действием концентрированных минеральных кислот — соляной, серной, азотной и фтористоводородной, а также и растворов щелочей. Соляная кислота и щелочи не действуют на полиэтилен и при нагревании до 100°, азотная концентрированная кислота —при нагревании до 60—70° но последняя при 100° начинает взаимодействовать с ним. Хлорсульфоновая кислота заметно разрушает полиэтилен уже при комнатной температуре. [c.767]

    Свойства полиэтилена, получающегося по изложенному способу, не описаны сколько-нибудь подробно. Указывается только, что он почти не растворим в обычных растворителях, лишь при нагревании до 70° становится заметно растворимым в бензоле, ксилоле и четыреххлористом углероде кислоты и щелочи на полиэтилен не действуют, он чувствителен к ультрафиолетовым лучам, хорошо совмещается с полиизобутиленом. Тангенс угла потерь 0,0005 при 50 гц. [c.776]

    Высокомолекулярный полиэтилен—желто-белое роговидное, пластичное, легкое, морозостойкое вещество. Концентрированные кислоты, включая фтористоводородную, а также щелочи не разрушают его. [c.88]

    Полиэтилен высокой и низкой плотности обладает достаточно хорошей механической прочностью, легкостью, отличной эластичностью как прч Положительных, так и отрицательных температ- рах, а также высокой химической стойкостью. Он стоек к действию концентрированных кислот и щелочей, нефтепродуктов, растворителей и масел при температуре не выше 50— 60 °С, обладает высокой водостойкостью и стойкостью к действию водяных паров. [c.86]

    Полиэтилен — один из самых распространенных и освоенных промышленностью полимеров, характеризуется высокой стойкостью к воздействию воды и агрессивных сред при температуре до 60 °С. Обладает высокой стойкостью к кислотам, щелочам, многим окислителям и растворителям. Практически не действуют на полиэтилен жиры, масла, керосин и другие нефтяные углеводороды. Фосфорная, соляная и фтористоводородная кислоты в любых концентрациях не оказывают на полиэтилен заметного действия. Однако серная и азотная кислоты при температурах выше 60 °С быстро его разрушают. [c.122]

    Полиэтилен 60 Плавиковая кислота Соляная кислота Растворы щелочей Растворы солей минеральных кислот Спирты Любая [c.78]

    Полиэтилен получают высокого давления (ВД), низкого давления (НД) и среднего давления (СД). Температура размягчения полиэтилена ВД 100—11б°С, НД 125— 135°С. Полиэтилен НД обладает высокой химической стойкостью (табл. 6-18) к кислотам, щелочам, многим окислителям и растворителям и имеет повышенную прочность. [c.337]

    Полиэтилен — термопластичный материал, который перерабатывается в изделия прессованием, сваркой, литьем под давлением. При нормальной температуре полиэтилен стоек к действию минеральных кислот, щелочей и растворов солей, обладает хорошими диэлектрическими свойствами и морозостойкостью. Применяется для изготовления труб, различных изделий сложной конфигурации, в качестве футеровочного материала химической аппаратуры, работающей в интервале тем- [c.14]


    Полиэтилен весьма стоек к воде и водяным парам. При обычной температуре он не изменяется под действием минеральных кислот (соляной, серной, и фтористоводородной), растворов щелочей, а также многих растворителей. В ароматических и хлорированных углеводородах полиэтилен растворяется при нагревании до 70—80°С. [c.81]

    Полиизобутилен обладает высокой химической стойкостью и водостойкостью. Он устойчив на холоду к воздействию разбавленных и концентрированных кислот, а также щелочей. При одновременном действии кислорода и света, особенно ультрафиолетовых лучей, полиизобутилен подвергается частичной деструкции. Светостойкость полиизобутилена и стойкость к воздействию кислорода повышается при совмещении с каучука ми, полиэтиленом и некоторыми другими полимерами, а также с такими наполнителями, как сажа и графит. Минеральные наполнители можно вводить в полиизобутилен.в количестве до 90% от массы полимера. [c.88]

    Полиэтилен широко используется в технике в качестве электроизоляционного и упаковочного материала и для изготовления различных изделий (пленка, трубопроводы и др.). Полиэтилен устойчив к воздействию сильных кислот и щелочей, но обладает низкой термической устойчивостью и под действием солнечных лучей и кислорода воздуха постепенно становится хрупким (старение полимера). [c.120]

    Наиболее высокой химической стойкостью обладает фторопласт-3, который в обычных условиях не разрушается при действии кислот, щелочей и окислителей. Полиэтилен, полипропилен и полистирол устойчивы к действию кислот, щелочей, но разрушаются под влиянием окислителей—кислорода воздуха, озона, перекисей, азотной кислоты и т. д. Под влиянием кислорода воздуха изделия из полиэтилена и полипропилена (особенно тонкостенные) со временем становятся более твердыми, жесткими и хрупкими. Изделия из полистирола и полиамидов постепенно желтеют и приобретают хрупкость. Пластикаты разрушаются в растворах щелочей. Полиамиды нестойки к действию кислот и кислорода воздуха при повышенной температуре. Этролы разрушаются в растворах кислот и щелочей. Под влиянием атмосферных воздействий из пластиката и этролов постепенно удаляется часть пластификатора и полимеры становятся менее эластичными. [c.541]

    Стойкость к неорганическим кислотам и едким щелочам, малое сопротивление потокам, устойчивость к гниению и микроорганизмам, высокие диэлектрические свойства, пластичность, высокая морозостойкость, а также простота изготовления из него деталей, методами отливки, штамповки, вальцовки, обработки на режущих станках делают полиэтилен важным материалом. Полиэтилен является термопластическим материалом и широко используется при производстве пленок, лент, нитей, трубок, прутков и т. д., широко применяемых почти во всех областях техники и быта. В общем виде полиэтилен представляет собой большое число соединенных между собой остатков молекулы этилена и может быть выражен формулой [c.257]

    По.чиэтилеи обладает высокой водостойкостью. Его прогш-цаемость для водяных паров крайне низка. Полиэтилен устой-чип п кнс.ютлх, щелочах, растворах солей и в различных органических растворите, 1Ях. Серная и соляная кислоты но оказывают на полиэтилен никакого действия даже при нагреве. Разрушающе на него действуют окислительные среды. [c.420]

    Трубы, фитинги, краны, вентили Вода, кислоты, щелочи, растворители, сухой воздух, сточные воды, иод, горячая вода, конденсат Продолжитель- ное 5—50 кгс1см Термопласты полиэтилен, полипропилен, политетрафторэтилен [c.219]

    Средний молекулярный вес стандартных образцов полипропилена достигает 150 ООО. Предел прочности нри растяжении такого полимера равен 330—360 Л г/г.)г, удлинение при разрыве достигает 400—800%. Как и полиэтилен, иолипропилен обладает превосходными диэлектрическими свойствами и устойчив к действию кислот и щелочей. При комнатной температуре стереорегулярный полипропилен не растворим в органических растворителях, при температуре выше 80 растворим в бензоле, толуоле, хлорированных углеводородах. [c.216]

    Полиэтилен находит широкое применение в строительной технике. Например, при строительстве оросительных каналов в качестве облицовочного материала вместо бетона используется полиэтиленовая пленка. Эта же пленка, пропуская свыше 90% ультрафиолетовых лучей, используется при сооружении теплиц. Из полиэтилена изготавливаются трубопроводы для воды и агрессивных жидкостей (кислот, щелочей и т. д.), оболочки кабелей, шланги, а также различные декоративные плитки и покрытия в целях защиты от атмосферных воздействий и коррозии. Например, полиэтиленовой пленкой можно покрывать листы алюминия. Образующийся алюмопласт, обладая эластичностью, устойчивостью против коррозии и химически агрессивных жидкостей, применяется с различными целями, в том числе и для декоративной отделки строительных конструкций. [c.415]

    Белое с перламутровым оттенком вещество, в тонких листах прозрачен, проницаем для ультрафиолетовых лучей, водо- и воздухонепроницаем. Поверхность не смачивается водой, т. е. является гидрофобной. Отличается высокой стойкостью к действию различных агрессивных сред. В не очень концентрированных растворах кислот и щелочей не набухает и не растворяется. Коррозионностоек. Обладает очень высокими электроизоляционными свойствами. Хорошо поддается механической обработке. При 110° размягчается, а при температуре ниже —20 становится хрупким. С некоторыми материалами (парафины, натуральный каучук и др.) способен образовывать однородные сплавы. При температуре 70—80 " растворяется в бензоле, толуоле, ксилоле, декалине, тетралине, трихлорэтилене и четыреххлористом углероде. При охлаждении раствора полиэтилен осаждается в виде тонкого порошка. [c.242]

    Водопоглощение за 30 суток 0,095%. Полиэтилен практически не изменяется при комнатной температуре под действием концентрированных кислот (серной, соляной) и щелочей. Предел прочности при растяжении полиэтилена высокого давления зависит от молекулярного веса и колеблется в пределах 120—160 кгс1см , относительное удлинение при разрыве 150—600%. Температура хрупкости —70° С. [c.98]

    Полиэтилен (—СНз—СНа—) — термопластичное полупрозрачное вещество, продукт полимеризации этилена. Полимеризацию ведут либо при высоком давлении ( 200 атм) и при 200° С, либо при атмосферном давлении с применением в качестве катализатора триэтилалюминия А1(С2Н5)з в смеси с ТЮЦ. Полиэтилен высокого давления — высококачественный диэлектрик, использование которого возможно в диапазоне высоких и сверхвысоких частот. Его удельное объемное сопротивление порядка 10 ом-см, удельное поверхностное сопротивление 10 ол<, тангенс угла диэлектрических потерь (tgS) при 10 равен 0,0002—0,0004. Полиэтилен чрезвычайно устойчив к действию агрессивных сред (концентрированных кислот и щелочей). Влагонепроницаем, эластичен, легок (<1 = 0,92 — 0,96 г/см ), механически прочен. Полиэтилен способен набухать в [c.382]

    Полиолефины — полиэтилен (ГОСТы 16337—Т1 и 16338—77), полипропилен, полистирол (ГОСТ 20282—74) — используют преимущественно в качестве футеровочиых материалов в средах средней и повышенной коррозионной активности. Из полиформальдегида, отличающегося высокой износостойкостью и повышенным пределом выносливости, изготовляют арматуру, зубчатые колеса и различные, детали сложной конфигурации. Фенопласты — пластические массы широкого ассортимента на основе фенолформальдегидных смол — применяют для получения различных технических изделий методами прессования и литья под давлением, слоистых полимеров, пленок, связующих, лаков и т, д., в чa тнo ти текстолита (композиционный конструкционный материал, оЗладающий высокими прочностью и устойчивостью во многих агрессивных средах), сохраняющего свои свойства в интервале температур —195... +125 X. Фторопласты (ГОСТ 10007—80) обладают химической стойкостью к минеральным и органическим кислотам, щелочам и органическим растворителям, а также имеют низкий коэффициент трения из фторопластов изготовляют ленты, пленки, прессованные изделия профильного типа, трубы, втулки и т. п. [c.103]

    Как уже отмечалось, образование гидроксида, происходящее на поверхности защищаемой конструкции, вызывает повышение pH. Поэтому при сочетании катодной защиты с покрытиями необходимо выбирать покрытия, устойчивые к действию щелочей, например битум, полиэтилен или эпоксидную пластмассу. Образование щелочей часто приводит к осаждению карбоната кальция на защищаемой конструкции. Со временем это может вызвать уменьшение потребности в токе. При слишком отрицательных защитных потенциалах (перезашите) на защищаемой поверхности может происходить образование газообразного водорода. [c.69]

    Полиэтилен обладает хорошей морозостойкостью, во иевысокоД теплостойкостью. Устойчив к растворам кислот, щелочей н солей, но не устойчив к окислителям и воздействию ультрафиолетовых лучей, особенно при нагревании. Прн нормальной температуре набухает в большйнстве орх гмгнчв-ских растворителей. Имеет высокие диэлектрические свойства/негорюч. Легка поддается механической обработке, хорошо сваривается взотом при 220 С. I [c.344]

    Если каждая макромолекула П. состоит из 50—70 молекул этилена, связанных в одну цепочку, то полимер представляет собой жидкость, которую используют как смазочное масло если макромолекула состоит из 100—120 молекул этилена, то полимер представляет собой твердое белое вещество при связывании тысячи и более молекул этилена получается твердая полупрозрачная, эластичная и прочная пластическая масса с плотностью 0,92, называемая полиэтиленом (или поли-теном). П. морозостоек, проявляет пластичность при нагревании, обладает хорошим сопротивлением на разрыв. П. горит голубоватым, слабо светящимся пламенем, стоек при обычных условиях к действию щелочей, кислот и окислителей. Используют как электроизоляционный материал, для производства водопроводных труб, предметов домашнего обихода, посуды для хранения и перевозки щелочей и концентрированных кислот, как упаковочный материал для продуктов питания. Полиэфиры — высокомолекулярные соединения, получаемые поликонденсацией многоосновных кислот или их альдегидов с многоатомными спиртами. Известны природные (янтарь и др.) и искусственные П. Практическое применение получили глифталевые смолы, полиэтилентерефталат, полиэфирмалеинаты и полиэфирак-рилаты. [c.106]

    Более серьезные отрицательные последствия в синтезе высокомолекулярных ПЭГ может иметь обнаруженное недавно [33] расщепление простых полиэфиров, в том числе полиэтпленоксида, под действием агентов основного характера типа бутиллития, щелочей, алкоголятов и т. п. Например, высокомолекулярный полиэтилен-оксид (молекулярная масса выше 100 тыс.) разлагается под действием бутиллития при 30 С до полиэтиленглпколя с около 1500. Аналогичным образом, но менее активно действуют соединения натрий и калия. Нетрудно предположить, что активность соединений щелочных металлов должна падать с увеличением радиуса и понижением электрофильности катиона, т. е. от Li+ к s , поскольку первоначально должен образовываться комплекс иона металла с кислородом. Роль таких реакций разрыва цепи непосредственно в ходе полимери-зациоиного процесса анионного типа в настоящее время не ясна. [c.228]

    Трудность при использовании таких вентильных электродов может заключаться в осуществлении обратной диффузии продуктов реакции через мелкие поры неактивного запорного слоя 3, что необходимо для нормальной работы электрода. Работа вентильных электродов в этом отношении исследовалась на примере каталитического дегидрирования этилового спирта [7], Для этой цели были изготовлены плоские вентильные электроды, которые в противоположность электроду, изображенному на фиг. 105, имели два одинаковых мелкопористых каталитически неактивных запорных слоя (медные ДСК-слой), с обеих сторон закрывавших крупнопористый каталитически активный рабочий слой Р (никелевый ДСК-слой). По краям электроды были впрессованы в полиэтилен. Смесь щелочи и этилового спирта проникала через поры запорных слоев, и спирт в рабочем слое Р дегидрировался с выделением водорода. По мере роста давления газа раствор вытеснялся из рабочего слоя и реакция дегидрирования прекращалась. Заметного выделения водорода на запорных слоях не происходило, ибо минимальное перенапряжение водорода на меди достаточно велико. После этектро-химического растворения получившегося водорода вновь начиналось дегидрирование этилового спирта. [c.306]

    С 1936 г. английский концерн ИСИ, а вскоре затем и ИГ стали выпускать полиэтилен высокого давления. Исследователями-химиками обоих концернов было найдено, что этилен полимери-зуется в присутствии катализаторов при высоких температурах и давлениях. В 1953 г. К. Циглер (1898—1973) разработал метод полимеризации этилена при низких давлениях с применением смешанных металлорганических катализаторов А1(С2Н5)з. В том же году итальянский химик Дж. Натта (1903) открыл способ получения полимеров олефинов упорядоченной структуры (изотак-тический полипропилен). Оба эти открытия стали основой для получения полиэтилена различной степени эластичности. В 1938 г. американская фирма Дюпон стала выпускать тефлон — продукт полимеризации тетрафторэтилена. Этот полимер обладает особенно высокой термической устойчивостью и стойкостью по отношению к кислотам и едким щелочам. [c.283]


Смотреть страницы где упоминается термин Щелочи полиэтилен: [c.355]    [c.420]    [c.103]    [c.310]    [c.477]    [c.65]    [c.44]    [c.549]    [c.458]    [c.53]    [c.860]    [c.365]   
Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.244 , c.246 ]




ПОИСК





Смотрите так же термины и статьи:

Щелочи



© 2025 chem21.info Реклама на сайте