Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нейромедиаторы ферменты

Рис. 8.2. Схема никотинового холинэргического синапса. Пресинаптическое нервное окончание содержит компоненты для синтеза нейромедиатора (здесь ацетилхолина). После синтеза (I) нейромедиатор упаковывается в пузырьки (везикулы) (II). Эти синаптические везикулы сливаются (возможно, вре.мен-но) с пресинаптической мембраной (1П), и нейромедиатор высвобождается таким путем в синаптическую щель. Он диффундирует к постсинаптической мембране и связывается там со специфическим рецептором (IV). В результате образования нейромедиатор-рецепторного комплекса постсинаптическая мембрана становится проницаемой для катионов (V), т. е. деполяризуется. (Если деполяризация достаточно высока, то появляется потенциал действия, т. е. химический сигнал снова превращается в электрический нервный импульс.) Наконец, медиатор инактивируется , т. е. либо расщепляется ферментом (VI), либо удаляется из синаптической щели посредством особого механизма поглощения . В приведенной схеме только один продукт расщепления медиатора— холин — поглощается нервным окончанием (VII) и используется вновь. Базальная мембрана — диффузная структура, идентифицируемая методом электронной микроскопии в синаптической щели (рис. 8.3,а), здесь не показана. Рис. 8.2. Схема <a href="/info/1561416">никотинового холинэргического синапса</a>. <a href="/info/567158">Пресинаптическое нервное окончание</a> содержит компоненты для синтеза нейромедиатора (здесь ацетилхолина). <a href="/info/1536682">После синтеза</a> (I) нейромедиатор упаковывается в пузырьки (везикулы) (II). Эти <a href="/info/265924">синаптические везикулы</a> сливаются (возможно, вре.мен-но) с пресинаптической мембраной (1П), и нейромедиатор высвобождается таким путем в <a href="/info/103587">синаптическую щель</a>. Он диффундирует к постсинаптической мембране и связывается там со <a href="/info/32074">специфическим рецептором</a> (IV). В <a href="/info/71788">результате образования</a> нейромедиатор-<a href="/info/292453">рецепторного комплекса</a> <a href="/info/102673">постсинаптическая мембрана</a> становится проницаемой для катионов (V), т. е. деполяризуется. (Если деполяризация достаточно высока, то появляется <a href="/info/101645">потенциал действия</a>, т. е. <a href="/info/142311">химический сигнал</a> снова превращается в электрический <a href="/info/99774">нервный импульс</a>.) Наконец, медиатор инактивируется , т. е. либо <a href="/info/104836">расщепляется ферментом</a> (VI), либо удаляется из <a href="/info/103587">синаптической щели</a> посредством особого <a href="/info/19561">механизма поглощения</a> . В приведенной схеме <a href="/info/1728206">только один</a> <a href="/info/137071">продукт расщепления</a> медиатора— холин — поглощается <a href="/info/510193">нервным окончанием</a> (VII) и используется вновь. <a href="/info/509001">Базальная мембрана</a> — диффузная структура, идентифицируемая <a href="/info/117537">методом электронной микроскопии</a> в <a href="/info/103587">синаптической щели</a> (рис. 8.3,а), здесь не показана.

    Объемы выделяемых нейромедиаторов (называемых также и нейротрансмиттерами) невелики. Ацетилхолин, например, выделяется дозами, каждая из которых содержит около 10 ООО молекул. Эти молекулы распределяются по синаптической щели так, что сигнал достигает рецептора. Воздействие ацетилхолина на рецептор вызывает соответствующий физиологический ответ, после чего трансмиттер подвергается разрушению. Ацетилхолин гидролизуется под действием фермента ацетилхолинэстераза (АХЭ). [c.406]

    Следующим этапом рецепции является связывание молекулы лиганда—гормона, нейромедиатора — с рецептором, ведущее к восприятию сигнала. В результате взаимодействия лиганда с рецептором образуется лиганд-рецепторный комплекс, формально аналогичный фермент-субстратному комплексу (см. гл. XIV)  [c.262]

    На третьей - фармакодинамической - стадии изучаются проблемы распознавания лекарственного вещества (или его метаболитов) мишенями и их последующего взаимодействия. Мишенями могут служить органы, ткани, клетки, клеточные мембраны, ферменты, нуклеиновые кислоты, регуляторные молекулы (гормоны, витамины, нейромедиаторы и т.д.), а также биорецепторы. Рассматриваются вопросы структурной и стереоспе-цифичной комплементарности взаимодействующих структур, функционального и химического соответствия лекарственного вещества или метаболита (например, фармакофорной группировки) его рецептору. Взаимодействие между лекарственным веществом и рецептором или акцептором, приводящее к активации (стимулированию) или дезактивации (ингибированию) биомишени и сопровождающееся ответом организма в целом, в основном обеспечивается за счет слабых связей - водородных, электростатических, ван-дер-ваальсовых, гидрофобных. [c.13]

    Вернемся к такой специфической особенности нейронов, как высокая скорость обмена веществ. Ядро и большая часть рибосом расположены в теле нервной клетки. Однако многие белки необходимы в высокой концентрации в аксоне и синаптических окончаниях. К таким белкам относятся ферменты синтеза и распада нейромедиаторов, а также мембранные белки. При перерезке аксона отделенное синаптическое окончание очень скоро атрофируется это наблюдение еще много лет назад позволило заключить, что из тела клетки на периферию поступают какие-то необходимые вещества. Экспериментально установлено, что действительно многие соединения перемещаются от тела клетки вниз по аксону со скоростью 1—10 мм/день. Больший интерес, однака представ- [c.349]

    Для любого специалиста в этой области — работает ли он в основном с ферментами или с рецепторами — трудно отличить одну модель от другой. В случае нейромедиаторов интерпретация экспериментальных данных даже более затруднена, так как антагонист всегда ингибирует связывание агониста. Он может также ингибировать одну из стадий процесса, протекающую после связывания, например транспорт ионов через открытый канал, закрыв его как пробка в трубке, или сопряжение между связывающим центром медиатора и ионным каналом, т. е. открывание канала. Первый механизм, по-видимому, лежит в основе действия многих местных анестетиков, тогда как второй относится к некоторым эффекторам адренэргических рецепторов (см. ниже). [c.248]


    Перечисленными функциями роль белков в живой природе не исчерпывается. Некоторые из них будут изложены ниже в этом параграфе, другие будут рассмотрены в различных разделах курса. Однако уже из приведенных примеров видно, что функциональные белки обладают уникальной способностью с высокой степенью избирательности взаимодействовать с вполне определенными партнерами или, как принято говорить в биохимии, узнавать этих партнеров. Так, ферменты узнают совершенно определенные вещества — субстраты, превращение которых они катализируют рецепторы узнают определенный гормон или нейромедиатор, транспортные белки — те компоненты, перенос которых через клеточную мембрану они должны обеспечить, и т.п. [c.38]

    Физостигмин сыграл важную роль в истории науки. Он ингибирует фермент холинэстеразу, расщепляющую ацетилхолин (см. разд, 6,2). Благодаря этому последний, как нейромедиатор, долго сохраняется в нервных окончаниях. Это позволило выделить его из них, определить его функцию и вообще развить теорию химической передачи электрического импульса через синапсы нервной системы. [c.531]

    Трофические факторы исключительно важны для образования и выживания нервной системы. Они могут быть белками,, ионами (Са +, Ма+, К+ или др.), нейромедиаторами или гормонами. Наилучшим образом изучен фактор роста нерва (N0 ) — белок, стимулирующий рост нейритов в ганглии, активирующий ферменты (например, тирозингидроксилазу) и необходимый для выживания симпатической нервной системы. [c.349]

    Рецепторы, не связанные с каналами, запускают такие же процессы, что и при воздействии водорастворимых гормонов и локальных химических медиаторов повсюду в организме (разд. 12.3). В таких рецепторах участки связывания нейромедиатора функционально сопряжены с ферментом, который в присутствии нейромедиатора обычно катализирует образование внутриклеточного посредника, например сАМР. В свою очередь этот посредник вызывает изменения в постсинаптической клетке, в том числе модификацию ионных каналов в клеточной мембране. В отличие от рецепторов, связанных с каналами, эти рецепторы, как правило, опосредуют относительно замедленные, но более продолжительные эффекты нейромедиаторов. Полагают, что активация таких рецепторов вызывает в нейронах изменения, которые сохраняются длительное время и лежат в основе научения и памяти (разд. 19.5.3). [c.305]

    Нейромедиаторы, подобно многим другим биологически активным молекулам, должны прореагировать с рецепторами (обычно на поверхности клеток), для того чтобы выполнить свою биологическую функцию. Эти рецепторы, как и ферменты, могут [c.133]

    Измерение содержания ацетилхолина по изменению pH. Концентрацию нейромедиатора ацетилхолина можно определить по изменению pH, сонровождающему гидролиз ацетилхолина. При инкубации ацетилхолина с каталитическими количествами фермента ацетилхолинэстеразы он количественно превращается в холин и уксусную кислоту, которая диссоциирует с образованием ацетат-иона и иона водорода  [c.104]

    В 1999 г. был открыт необычный нейромедиатор - D-серин, HO H2 H(NH2) OOH. Оказалось, что эта правосторонняя а-аминокислота вырабатывается в организме человека из левосторонних а-аминокислот (из их L-форм). Еще одна неожиданность заключалась в том, что биосинтез D-серина осуществляется не в самих нейронах, а в астроцитах - клетках, покрывающих нейроны. Из астроцита этот нейромедиатор затем диффундирует в нервную клетку и взаимодействует со специальными рецепторами. Начинается разработка лекарственных веществ, регулирующих активность фермента, контролирующего синтез D-серина. Эти лекарства, как ожидается, могут оказаться полезными при инсультах, гипертонических кризах и помогут защищать нейроны от необратимых повреждений. [c.38]

    Эти яды имеют больщое сродство к остаткам серина (его гидроксилу) и аспарагиновой кислоты (ее свободной карбоксильной группе), находящимся в активном центре холинэстеразы. Ингибированный таким образом фермент перестает перерабатывать нейромедиатор, что приводит к перевозбуждению хо-линорецепторов и нервной системы из-за резкого повыщения концентраций ацетилхолина. Антидоты действуют по принципу фармакологического антагонизма они деблокируют фермент холинэстеразу за счет их более прочного взаимодействия с фос-форорганическим ядом (рис. 6). [c.122]

    Осн. ф-ция К.-активация мн. ферментов аденилатциклазы, фосфодиэстеразы циклич. нуклеотидов, киназы фосфо-рилаз и легких цепей миозина (киназы-ферменты, катализирующие перенос фосфорильной группы с АТФ на субстрат), Са -зависимой протеинкиназы цитоплазмы и мембран, фосфолипазы Aj и др. Благодаря этому он влияет на гликогенолиз и липолиз, секрецию нейромедиаторов, адренергич. передачу регуляторного сигнала, изменяет функциональные св-ва рецепторов, ускоряет активный транспорт Са в сердце и мозге, препятствует гуанозинтрифосфат-зависимой полимеризации тубулина (белок, из к-рого состоят жгутики и реснички клеток животных и растений), влияет на скорость деления клеток. [c.293]

    Антидепрессанты эффективны при лечении психич. депрессий. В основе механизма их действия лежит способность 1шгибировать фермент моноаминоксидазу, что сопровождается накоплением и усилением действия эндогенных нейромедиаторов-норадреналина, дофамина, серотонина. Важнейшие представители-амитриптилин, пиразидол и др. [c.139]


    Ингибирование ферментов лежит в основе действия антибиотиков и других химиотерапевтических препаратов (см., например, дополнение 6-А). Однако многие лекарственные препараты взаимодействуют с рецепторами, расположенными на клеточной поверхности, которые не являются ферментами в обычном смысле этого слова. Согласно теории рецепторов, разработанной примерно в 1937 г., близкие по структуре лекарственные препараты часто оказывают аналогичное действие, поскольку связываются с одним и тем же рецептором. В нормальных условиях рецептор может связывать гормон, нейромедиатор или какой-либо метаболит, структурно близкий лекарственному препарату. С"вязывание с соответствующим рецептором препаратов одного класса, называемых в фармакологической литературе агонистами, вызывает в клетке ту же реакцию, что и связывание гормона. В то же время соединения с родственной структурой могут. действовать и как антагонисты связывание их с рецептором не вызывает должного ответа. Вза имоотношения агониста и антагониста часто носят конкурентный характер, подобный конкурентному ингибированию ферментов. [c.32]

    Другой пример необратимого ингибирования — действие диизопропилфторфосфата (ДФФ), соединения из фуппы нервно-паралитических офавляющих веществ. ДФФ связывается с остатком аминокислоты серина, находящргмся в активном ценфе фермента ацетилхолинэстеразы. Этот фермент инактивирует ацетилхолин, ифа-юпщй роль нейромедиатора. Одна из функций ацетилхолина заключается в обеспечении передачи нервного импульса от одного нейрона к другому через синаптическую щель (гл. 17). Почти [c.163]

    В настоящее время используется более 200 органических инсектицидов, предназначенных для того, чтобы уничтожать насекомых, ие нанося существенного вреда людям и живот-ным . Действие многих из этих соединений состоит в ингибировании дыхания клеток другие разобщают синтез АТР и перенос электронов. Хлорированные углеводороды, такие, как ДДТ, действуют на нервную систему, причем механизм этого действия до сих пор еще не установлен. Один из крупнейших классов органических инсектицидов действует на специфический фермент нервной системы — ацетилхолинэстеразу. Нейромедиатор ацетилхолин выделяется из нервных окончаний в области многих синапсов (гл. 16). Ацетилхолин (обладающий большой токсичностью, когда он находится в избыточных количествах) должен быстро разрушаться, в противном случае синапс не будет готов к передаче следующего импульса  [c.104]

    Трансдуцин, также называемый G-белком, удивительно похож на N-белки — описанные в гл. 9 мембранные компоненты, передающие некоторые гормональные сигналы или сигналы нейромедиаторов от их рецепторов к ферменту аденилатциклазе. И трансдуцин, и N-белки состоят из трех полипептидных цепей <х, и и механизмы их действия, по-видимому, очень сходны. Подобие системы родопсин — трансдуцин — фосфодиэстераза и системы -адренэргический рецептор — N-белок — аденилатцик-лаза так велико, что возможна, например, перекрестная рекомбинация (замена) отдельных компонентов этих систем. В одном из таких экспериментов по реконструкции было показано, что трансдуцин способен передавать сигналы от -рецепторов к аденилатциклазе в клетках с недостаточным количеством N-белка. [c.18]

    Нейрональная мембрана, рассматриваемая как цитоплазматическая мембрана, несет в клетке не только пассивную структурную функцию. Она служит барьером для поддержания внутриклеточного состава и функций клетки (ионы, электрический потенциал, метаболиты) и для ее компартментации (клеточные органеллы, везикулы нейромедиаторов), играет активную (ионные насосы, ферменты) и пассивную (ионные каналы, высвобождение медиатора) роли при передаче нервного импульса. Она обладает специфическими характеристиками, необходимыми для развития нервной системы и установления синаптических связей (клеточная адгезия и узнавание). Она проводит также межклеточные сигналы (гормоны, медиаторы, лекарства). [c.88]

    Единого холинэргического синапса не существует. Холинэргические синапсы представляют собой группу структурно, функционально и фармакологически весьма различных синапсов. Объединяет их только одно — использование ацетилхолина в качестве нейромедиатора. Особого внимания заслуживают ней-ромышечные соединения, где нервный импульс передается мышечному волокну и вызывает его сокращение. Имеются, однако, многочисленные свидетельства того, что холинэргические синапсы, кроме этой периферической функции, играют важную роль в центральной нервной системе [3, 4], участвуя в таких процессах, как поведение, сознание, эмоции, обучение и память. Доказательствами этого служат биохимические исследования метаболизма ацетилхолина и ассоциированных ферментов в центральной нервной системе, а также эксперименты с психофармакологическими веществами, влияющими на холинэргические синапсы. Ацетилхолин представляет собой также важный медиатор вегетативной нервной системы. Во всех ганглиях симпатических и парасимпатических систем имеются холинэргические синапсы. В постганглионарных, т. е. соединяющих ганглий и орган-мишень, нервных волокнах ацетилхолин опосредует передачу нервного импульса во всех парасимпатических синапсах (т. е. синапсах глаз, сердца, легких, желудка, кишечника) и в некоторых симпатических (например, синапсах потовых желез). [c.193]

    Рецепторы являются белками, которые, будучи центрами связывания и действия физиологических эффекторов (гормонов, нейромедиаторов), передают внеклеточные сигналы внутрь клетки. Они состоят из узнающих и связывающих белков, принимающих сигнал, и из эффектора, трансформирующего этот сигнал в определенный эффект. Эффектор может быть ионным каналом, транспортной системой или ферментом. Мы обсуждали различные модели механизма сопряжения связывания лиганда (гормона, медиатора) и его действия самая вероятная из них основана на аллостерической модификации рецепторного белка. Функции связывания и осуществление эффекта относятся, возможно, к различным субъединицам рецепторного комплекса. В качестве примера можно привести гормончувствительную аденилатциклазу, которая в качестве эффектора может быть отделена от связывающего участка и биохимически очищена. Согласно гипотезе плавающего рецептора, этот фермент латерально диффундирует в клеточной мембране и регулируется разнообразными рецепторами. Внеклеточный сигнал переносится к этому ферменту через третий компонент — группу сопрягающих белков, называемых N-белками. Они могут обладать стимулирующим (Ns) или ингибирующим (N ) действием. В свою очередь N-белки активируются GTP, а функция рецеп- [c.299]

    Циклические нуклеотвды 3, 5 -аденозинмонофосфат (цАМФ) и 3, 5 -гуано-зинмонофосфат (цГМФ) являются внутриклеточными посредниками различных внеклеточных сигналов (гормонов, нейромедиаторов и т. д.). Они образуются под действием ферментов (циклаз), активность которых регулируется различными эффекторами, в том числе и гормонами, и осуществляют регуляцию внутриклеточного метаболизма. Существующие также циклические соединения 2, 3 -АМФ и 2, 3 -ГМФ являются промежуточными продуктами распада нуклеиновых кислот и не имеют самостоятельного функционального значения  [c.176]

    Постхянаптнческие лиганд-зависимые каналы обладают еще двумя важными свойствами. Во-первых, рецепторы, связанные с каналами, специфичны, подобно ферментам, лишь по отношению к определенным лигандам и поэтому отвечают на воздейсгаие только одного нейромедиатора-того, который высвобождается из пресинаптического окончания другие медиаторы не оказывают практически никакого эффекта. Во-вторых, для каналов разного шла характерна различная ионная специфичность одЯи могут избирательно пропускать N3, другие-К., третьи-С1 и т.д. могут быть и такие, которые мало избирательны по отношению к различным катионам, но не пропускают анноны. Однако ионная специфичность постоянна для данной постсинаптической мембраны обычно все каналы в синапсе обладают одной и той же избирательностью. [c.99]

    Нейромедиатор синтезируется либо в пери-карионе, откуда транспортируется в пресинап-тическое окончание нейрона, либо непосредственно в самом окончании. В обоих случаях для этого нужны ферменты, собираемые на рибосомах в теле нейрона. В синаптическом окончании нейромедиатор упаковывается в пузырьки и хранится там до высвобождения. В нервной системе позвоночных имеются два главных вещества этого типа — ацетилхолин (АцХ) и норадреналин, хотя существуют и другие нейромедиаторы, которые мы рассмотрим в конце настоящего раздела. Ацетилхолин представляет собой уксуснокислый эфир холина. Это первый вьщеленный учеными нейромедиатор (в 1920 г.). Норадреналин описан в разд. 17.6.5. Нейроны, связь между которыми опосредована ацетилхолином, называются холинергическими, а использующие для синаптической передачи норадреналин — адренергическими. Норадреналин высвобождается симпатическими нервами, тогда как ацетилхолин — почти всеми остальными нервами (кроме некоторых в головном мозге). [c.288]

    МОНОАМИНЫ. Норадреналин, один из гормонов надпочечников, является одновременно нейромедиатором симпатической нервной системы, подготавливающим организм к быстрой реакции (разд. 17.2.3). Он обнаружен также в головном мозге, где он способствует улучшению внимания и поддержанию бодрствующего состояния. Таким образом, в целом он усиливает реакцию на новые стимулы. Стимулирующие таблетки, содержащие амфетамины, повышают содержание норадреналина в головном мозге, ингибируя фермент моноаминоксидазу (МАО). В норме моноаминоксидаза окисляет норадреналин, реабсорбированный синаптическими окончаниями, предотвращая таким образом гиперстимуляцию. Другой эффект амфетаминов — стимуляция высвобождения дофамина и в результате стимуляция системы поощрения (см. ниже). Кроме того, повышая уровень норадреналина в симпатических синапсах, они стимулируют симпатическую нервную систему. [c.295]

    Именно в этой последовательности событий возможна генетическая изменчивость. Например, ферменты синтеза и расщепления молекул медиаторов могут обладать различной активностью, мембраны могут иметь структурные отличия, сказывающиеся на их проницаемости для молекул нейромедиаторов или ферментов, могут существовать различия в рецепторах и, наконец, на функции синапса могут оказывать влияние внешние регулирующие воздействия на разных уровнях. Самая простая возможность состоит в изменении количества молекул медиатора. В самом деле, некоторые результаты исследования психических заболеваний указывают на аномалии нейромедиаторной функции. [c.121]

    Декарбоксилирование аминокислот. Декарбоксилирование аминокислот представляет процесс отщепления карбоксильной группы от аминокислоты в форме СО2. Декарбоксилированию в условиях живого организма могут подвергаться некоторые аминокислоты и их производные. Декарбоксилирование катализируется специальными ферментами — декарбоксилазами, коферментом которых (за исключением гистидиндекар-боксилазы) служит пиридоксальфосфат. Продуктами декарбоксилирования являются амины, обладающие биологической активностью, — биогенные амины (табл. 12.7). К этой группе соединений принадлежит большая часть нейромедиаторов (см. главу 16) и регуляторных факторов местного [c.380]

    Нейрон является функциональной единицей нервной системы. Основная функция нейрона состоит в распространении и интеграции кодированной информации. Элементарным проявлением активности нейрона служит его возбуждение, которое сопровождается химическими, электрохимическими и тепловыми изменениями. Нейроны (рис. 16.1) характеризуются неправильными очертаниями и состоят из тела клетки, концевых пластинок и отростков, которые, как живые провода , образуют нейронные цепи. Каждый нейрон связан с другими нейронами нервной ткани с помощью двух типов отростков — аксонов и дендри-тов. Аксон — главный длинный отросток, а дендриты — короткие отростки центральной части нейрона. Дендриты передают возбуждение к нейрону, а аксоны — к периферии. Отростки представляют собой полые трубки, образованные мембраной и наполненные цитоплазмой, которая движется внутри аксона по направлению к пластинкам, увлекая за собой белки-ферменты, синтезирующиеся в теле нейрона и катализирующие синтез нейромедиаторов в концевых пластинках. Нейромедиаторы — это вещества, благодаря которым происходит передача возбуждения от одного нейрона к другому. Нейромедиаторы за- р с. 16.1. Схематическое изображение пасаются в синаптических пузырьках нейрона [c.457]

    Рассмотрение феромонов в данной главе вызвано их действием на органы чувств, так как феромоны переносят информацию на уровне нервных систем различных организмов. Понятие феромонная коммуникация включает в себя более употребительный, но и более узкий термин — хеморецепция . Хотя молекулярные механизмы биологического действия феромонов остаются далеко не выясненными, их следует относить скорее к даяьнодействующим нейромедиаторам, нежели к классическим гормонам, являющимся посредниками между эндокринной системой организма и ферментами. Специальные разделы двух областей исследований — химической этологии и химической экологии — занимаются изучением и практическим использованием веществ, определяющих многие стороны взаимоотношений между отдельными индивидуумами, видами и сообществами животных и растительных организмов. Так, изучение феромонной куммуникации жуков имеет особое значение для разработки экологически чистых способов борьбы с вредными их видами. [c.469]

    Постсинаптические лиганл-зависимые каналы обладают еще двумя важными свойствами. Во-первых, как рецепторы они, подобно ферментам, взаимодействуют лищь с определенными лигандами и поэтом реагируют только на один нейромедиатор - тот, который высвобождается из пресинаптического окончания другие медиаторы не вызывают практически никакого эффекта. Во-вторых, как каналам им свойственна различная ионная специфичность одни могут избирательно пропускать К , другие - СГ и т.д.. в то время как третьи, например, могут быть относительно мало избирательны по отнощению к различным катионам, но не пропускают анионов Как мы увидим, природа постсинаптического ответа зависит от специфичной ионной проницаемости лиганд-зависимых каналов. [c.313]

    Ферменты нейромедиаторов и генетическая изменчивость нормального поведения. Нейромедиа-торные ферменты обнаруживают отклонения в активности не только при аффективных расстройствах и психозах изменчивость в заметных пределах существует также между нормальными индивидами. Близнецовые исследования показали, что эта изменчивость в значительной мере определяется генетически Е 46 2029]. Для одного из ферментов, дофамин-Р-гидроксилазы, на основе семейных данных удалось продемонстрировать единый генетический вариант с нулевой активностью в сыворотке 32387-3340]. Однако до сих пор не было сообщений о его корреляциях с поведенческими показателями или с функцией автономной нервной системы (синапсы симпатической нервной системы являются адренергическими). [c.133]


Смотреть страницы где упоминается термин Нейромедиаторы ферменты: [c.123]    [c.122]    [c.601]    [c.62]    [c.229]    [c.315]    [c.146]    [c.94]    [c.132]    [c.243]    [c.761]    [c.490]    [c.288]    [c.340]    [c.68]    [c.58]   
Генетика человека Т.3 (1990) -- [ c.133 ]




ПОИСК







© 2025 chem21.info Реклама на сайте