Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

специфичные фрагменты

    Принцип использования флуоресцирующих антител был приспособлен и для электронной микроскопии антитела или гаптены соединяются с электроноплотными веществами (например, с железосодержащим белком ферритином) или такими, которые могут быть сделаны электроноплотными уже после реакции антиген — антитело (например, с антителом связывается пероксидаза из хрена, которой после связывания дают возможность реагировать с диаминобензидином). На практике используется множество комбинаций, включающих антисыворотки с различными специфичностями, фрагменты антител, гаптены, а также такие маркеры для визуализации, как небольшие вирусы и т. п. Эти методы, применимые к целым бактериям, позволяют локализовать поверхностные антигены точнее, чем это делают с помощью оптического микроскопа. Преимущества электронной микроскопии становятся еще более очевидными, когда меченые антитела применяют еще до фиксации, заливки и приготовления срезов, так что метка видна в тонких срезах. В некоторых случаях аналогичным образом метят не антитела, а другие вещества с известной специфичностью чаще всего применяются лектины растений, такие, как конканавалин А, которые специфично связываются с сахарными остатками [88]. [c.125]


    Ключевую роль в развитии генетической инженерии растений сыграло изучение механизмов переноса специфичных фрагментов [c.460]

    Другим продуктом расщепления является СоА-эфир жирной кислоты, содержащей на два атома углерода меньше, чем исходная жирная кислота. Этот эфир используется в качестве субстрата для нового цикла реакций. После каждого цикла цепь кислоты укорачивается на один двууглеродный фрагмент и теряет две пары атомов водорода, переходящие к специфичным акцепторам. [c.105]

    Специфичность четвертичной структуры белков проявляется в определенной конформационной автономии полипептидных фрагментов, входящих в состав макромолекулы белка. [c.349]

    Субстратная специфичность химотрипсина. Специфические каталитические свойства ферментов обусловлены многоточечным (многоцентровым) взаимодействием между субстратом и белком [54] (см. гл. I и II). В многоцентровом взаимодействии фермент — субстрат важная роль отведена сорбции на белке боковых, химически инертных фрагментов субстратной молекулы. При анализе этого вопроса для реакций, катализируемых химотрипсином, будем исходить из модельной структуры [55 его субстратов  [c.132]

    Наиболее распространенными типами структурно-специфичных скелетных перегруппировок являются процессы элиминирования фрагментов сопряженных систем  [c.179]

    Слабые химические взаимодействия соответствуют изменениям энергии в 300—400 раз меньшим возникновение новых связей при этом часто не сопровождается разрывом прежних, а лишь некоторым ослаблением их. Поэтому такие взаимодействия способствуют образованию большего числа связей и в целом повышению уровня структурирования системы — объединению ее фрагментов в единое целое. Слабые химические взаимодействия в сложных молекулах более специфичны, чем сильные, в том смысле, что за счет их энергии не всегда можно преодолеть барьеры, обусловленные особенностями геометрии молекулы, и поэтому геометрические факторы приобретают существенное значение в качестве критериев выбора пути реакции. Слабые химические взаимодействия могут быть обусловлены перераспределением электронной плотности, переносом заряда и особенно часто — водородными связями. [c.241]

    Целлюлоза, амилоза, амилопектин и гликоген — полисахариды, построенные исключительно из фрагментов о-глюкозы, — отличаются друг от друга только положением и стереохимией гликозидных связей. Сравнение ферментативного расщепления этих соединений демонстрирует замечательную специфичность ферментов. [c.286]


    В клетке межнуклеотидные связи в ДНК и РНК расщепляются нуклеазами — обширным классом ферментов, представители которого различаются по механизму действия и специфичности (табл. 1), Среди нуклеаз, приведенных в таблице, нужно особо выделить эндонуклеазы рестрикции (рестриктазы). ферменты (их функции рассмотрены в гл. VI) узнают в молекулах ДНК не отдельные нуклеотидные остатки, а нуклеотидные последовательности из четырех, пяти или шести остатков и поэтому расщепляют любую ДНК на сравнительно небольшое число строго определенных фрагментов. [c.13]

    Использование протеаз с различной специфичностью и проведение химического гидролиза пептидных связей по разным аминокислотным остаткам позволяют получать перекрывающиеся фрагменты, анализ аминокислотной последовательности которых дает возможность определять первичную структуру целого белка. [c.139]

    Спектры ЯМР Н алициклических эпоксидов с общим структурным фрагментом —С—О—СН —СН—СН показывают специфичность [c.81]

    Масс-спектр состоит из отдельных полос, высота которых соответствует относительному содержанию определенных ионов анализируемого соединения как функции массы [13, 14]. Эти ионы несут информацию о молекулярной массе и наиболее электронно-стабильных фрагментах исходной молекулы. По таким специфическим фрагментам можно, основываясь на атомной структуре, охарактеризовать молекулу анализируемого соединения. Па рис. 5-6 представлен масс-спектр ацетона, полученный при ионизации электронным ударом. В масс-спектре имеются полосы, соответствующие Отношениям масса/заряд (т/г) 15 и 43. Эти ионные осколки представляют собой осколки исходной молекулы ацетона (т/г 58). Показано [14-16], что спектры, получаемые посредством электронного удара, воспроизводимы и специфичны для большинства органических соединений. [c.82]

    Ранее в этой главе рассматривался вопрос о связи патологического процесса с накоплением в крови и других жидкостях организма изолированных внеклеточных частей рецепторов — / -белков. Их накопление при патологии несомпенно обусловлено нарастанием скорости катаболического распада мембранных белков поврежденных клеток за счет высвобождающихся во внешнюю среду клеточных протеиназ и активации циркулирующих протеолитических ферментов, например плазмина. С учетом уже приведенных данных модельных экспериментов закономерно заключить, что пул циркулирующих / -белков включает в себя изолированные внеклеточные участки как рецепторов, так и антирецепторов. Они образуют динамическую систему, состоящую нз комплексов соответствующих по специфичности фрагментов рецепторов и антнрецепторов, и тех же фрагментов в свободном состоянии. [c.96]

    Амиды кислот и другие производные аминокислот представляют интерес для изучения вопроса о генезисе нефти и в последнее время стали изучаться довольно интенсивно. Обнаружена специфичность состава этих соединений по сравнению с природными пептидами. Дальнейшие исследования порфирипов, производных аминокислот, изопреноидных структур и других фрагментов остат- [c.204]

    Не менее поучительно сопоставление сорбционных функций а-химотрипсина и другой сериновой протеазы — трипсина. Размеры и форма субстратсвязывающего (сорбционного) участка в активных центрах обоих ферментов примерно одинаковы [3]. Единственное различие в первичной структуре полипептидных фрагментов, образующих гидрофобный карман , состоит в том, что в а-химотрипсине остаток 189 — это серин (см. рис. 9), а в трипсине в соответствующем положении находится отрицательно заряженная аспарагиновая кислота. Это приводит к тому, что в отличие от а-химотрипсина трипсин обнаруживает специфичность к гидролизу пептидных связей, образованных положительно заряженной аминокислотой (Lys, Arg). Сорбция положительно заряженного субстрата на ферменте (вблизи каталитически активного нуклеофила активного центра) происходит в данном случае за счет электростатических взаимодействий (рис. И, б). [c.35]

    Гидрофобное фермент-субстратное взаимодействие вносит важный вклад в специфичность химотрипсинового катализа (см. 2, 4, 5 этой главы). Это связано с тем, что составной нукЛеофил, входящий в активный центр фермента и принимающий участие в атаке сорбированной молекулы субстрата, расположен в поверхностном слое белковой глобулы [17—19, 66, 67]. Реакции, катализируемые химотрипсином, протекают таким образом вблизи поверхности раздела фаз вода — белок и сопровождаются термодинамически выгодным переносом (полным или частичным) гидрофобных фрагментов молекулы субстрата из одной среды (вода) в другую (белок). Свсбодная энергия такого рода гидрофобного взаимодействия, сопровождающего химическую реакцию между ферментом и субстратом, зависит от структуры субстрата, а также от геометрической конгруэнтности ее по отношению к активному центру (см. 5 этой главы). [c.150]

    Равновесное образование метастабильных промежуточных соединений (специфичность связывания). Линейные. зависимости Д0.5—ДСэкстр иДОа—ДОжстр, представленные на рис. 43, характеризуются тангенсом угла наклона, равным примерно единице. Этот факт имеет простой физический смысл. А именно, отсюда следует, что свободная энергия образования метастабильных промежуточных соединений ЕЗ и ЕА изменяется в результате вариации структуры субстрата ровно настолько, насколько изменяется свободная энергия переноса вариабельного субстратного фрагмента Р из воды в органический растворитель, т. е. [c.151]


    Механизм ъ инётической специфичности химотрипсина. Размер химически инертного фрагмента К в субстратной молекуле оказывает влияние не только на связывание субстрата ферментом, но, что более удивительно, иа кинетику химических стадий. Скорость как стадии ацилирования (Аг), так и гидролиза промежуточного ацилфермента [см. уравнение (4.28)] возрастает при увеличении гидрофобности фрагмента Н- Количественное описание кинетической специфичности дает уравнение [c.154]

    СЫ вблизи 210 нм. Введение хромофора или ауксохрома к бензольному ядру приводит к потере такого специфичного признака бензольного ядра, как тонкая струкгура 5-полосы, и уменьшает надежность идентификации бензольного ядра по УФ-спектру. Выявление структурных элементов на основе анализа интенсивных 7С-полос в подавляющем большинстве случаев оказывается невозможным из-за их малой специфичности. Действительно, наблюдение ЛГ-полосы может свидетельствовать лишь о наличии той или иной цепочки сопряженных кратных связей (появление интенсивной полосы в районе 215 —240 нм является признаком фрагмента из двух сопряженных кратных связей, а наличие интенсивного поглощения при 1 > 260 нм указывает на присутствие более чем двух сопряженных кратных связей и т. д.), но не позволяет установить природу атомов, включенных в цепь сопряжения. [c.53]

    Среди ферментов, обнаруженных в живых организмах к настоящему времени, имеется несколько сотен деполимераз, основная функция которых заключается в деградации полимерных субстратов вплоть до мономеров или до фрагментов с относительно малой степенью полимеризации. Эти ферменты различаются по типу катализируемой ими химической реакции (гидролиз, перенос определенных химических групп, дегидратация, изомеризация и т. д.), по способу действия, специфичности к природе мономерных остатков полимера, специфичности к типу связей, соединяющих мономерные остатки и т. д. По-видимому, самая большая группа деполимераз в современной номенклатуре ферментов представлена 0-гликозидгидролазами, которые к тому же наиболее изучены по сравнению с другими ферментами с точки зрения их деполимераз-ного действия, а также строения протяженных участков их активного центра. [c.34]

    Природа основных и возбужденных электронных состояний различных химических соединений различна и специфична для эт1пс соединений (здесь она не рассматривается), поэтому разные химические соединения в общем случае поглощают свет при разных длинах волн, характерных для каждого соединения. Если родственные соединения содержат одинаковые структурные фрагменты — хромофоры (например, одинаковые ароматические или гетероциклы, функциональные фуппы, ионы и т. д.), то в их электронных спектрах поглоще 1ия наблюдаются полос<.1, обусловленные поглощением хромог оров и расположенные приблизительно в одной и той же области. Положение этих характеристических полос несколько изменяется при варьировании растворителей. Химическое соединение, в зависимости от его природы, может иметь не одну, а несколько полос в электронном спектре гюглощения. [c.525]

    Как уже упоминалось, ПК в качестве лигандов могут обладать как групповой специфичностью (для белков хроматина, факторов управления трансляцией, нуклеаз и др.), так и индивидуальной (для индивидуальных мРНК, белков-регуляторов транскрипции и др.). Во втором случае на аффинном сорбенте должны быть закреплены вполне определенные участки генома. Это стало возмолшым после создания способов отбора и наработки в достаточных количествах строго идентичных фрагментов ДНК методами генной инженерии. В последнее время возникла еще одна область использования иммобилизованных НК — в качестве праймеров матричного синтеза. Эти приложения предъявляют разные требования к характеру фиксации НК на матрице. В первом случае расположение точек закрепления на молекуле НК может быть произвольным, во втором определенные и достаточно протяженные участки полинуклеотидной цепи должны быть свободны для комплементарного взаимодействия, а в третьем закрепление НК на матрице желательно осуществить лишь по одному определенному концу молекулы. Что же касается возможности реакций с активированными матрицами, то вдоль всей молекулы НК во множестве располагаются химически эквивалентные группы аминогруппы нуклеиновых оснований, гидроксилы сахаров и др. В особом положении находится только концевой остаток фосфорной кислоты или сахара. [c.387]

    Все средние и крупные ТПС, как правило, построены по иерархическому принципу, в них всегда можно выделить те или иные относительно самостоятельные подсистемы или фрагменты исследуемой ТПС, которые можно рассчитывать отдельно. С другой стороны, для каждой такой подсистемы, в свою очередь, всегда имеются возможности для разумного упрощения (укрупнения) ее схемы без внесения сколько-нибудь заметной погрешности в результате расчетов. Данные вопрось весьма специфичны для ТПС конкретного типа и назначения, они подробно рассматриваются в специальной литературе (см., например, [2, 73, 147, 156, 204, 226 и др.]), но все они так или иначе сводятся к декомпозиции ТПС и эквивалентиро-ванию их расчетных схем. [c.126]

    Репликаза фага Q способна in vitro синтезировать цепи, полностью комплементарные как плюс-, так и минус-молекулам вирусной РНК. Система, однако, специфична для вирусной РНК и не может копировать никаких других полинуклеотидов. Возможно, что для инициации процесса репликации нужно, чтобы на З -конце имелись определенные последовательности. В пробирке репликация протекает с ошибками, такими, в частности, как преждевременная терминация цепи и неправильное спаривание оснований. В результате происходит образование мутантных форм РНК, что дает возможность получать молекулы РНК, размеры которой будут значительно меньше, чем у вирусной РНК, и которые будут при этом легко реплицироваться репликазной системой фага Q . Была установлена нуклеотидная последовательность одного из таких фрагментов, включающего всего лишь 114 нуклеотидов . [c.245]

    Анализируя имеющиеся данные [1, 167, 549] по селективным ионитам, содержащим фрагменты органических реагентов на ионы металлов, можно сделать вывод, что избирательность полимера в значительной степени обусловлена избирательностью соответствующего мономерного соединения и сохраняется как в полимерпзационных, так и в поликонденсационных смолах [167]. Так, смола, содержащая фрагменты дипикриламина, избирательна к калию, наличие глиоксимной группы обусловливает специфичность полимера к никелю, меркаптогруппы — к ртути, 8-гидроксихинолиновой — к меди и кобальту [1, 167]. [c.295]

    Опять-таки имеется семейство ферментов, специфичных к цепям разной длины. Одним из продуктов [уравнение (9-2)] служит ацетил-СоА, который поступает в цикл трикарбоновых кислот и подвергается катаболическому распаду с образованием СО2. Вторым продуктом тиолитического распада является ацил-СоА-производное, которое на два атома углерода короче исходной молекулы. Оно снова вступает в цикл р-окисления, причем в результате каждого оборота цикла освобождается двухуглеродный фрагмент, уходящий в виде ацетил-СоА [уравнение (9-2)]. Процесс продолжается до полного расщепления жирнокислотной цепи. Если исходная жирная кислота содержала в не-разветвленной цепи четное число атомов углерода, то ацетил-СоА бу- [c.309]

    Этот дисахарид - составная часть группоспецифического вещества крови, так называемого вещества Н, которое, как и вещества А и В, определяет специфичность группы крови. Так, смешивание крови разных групп приводит к специфической реакции антиген-антитело, в результате чего происходит агглютинация или растворение красных кровяных телец. Группоспецифические вещества крови представляют собой гликолипиды или гликопротеины, с помощью которых, например, липидная часть нековалентно закрепляется на внешней мембране эритроцита. К липидной части примыкает сердцевинная часть, состоящая из неспецифической олигосахаридной цепи, к которой примыкает детерминирующий олигосахаридный фрагмент (так называемый гаптен), содержащий группоспецифическое вещество крови [76]. Вещество Н, обнаруженное у обладателей группы крови О, содержит в качестве детерминант-ного трисахарид из г-фукозы, о-галактозы и N-aцeтил-D-глюкoзaминa (а-г-Гис-(1 2)-р-о-Са1-(1 3)-о-01с-ЫАс) [77]. [c.570]


Смотреть страницы где упоминается термин специфичные фрагменты: [c.346]    [c.49]    [c.118]    [c.48]    [c.177]    [c.146]    [c.197]    [c.288]    [c.39]    [c.741]    [c.24]    [c.132]    [c.303]    [c.103]    [c.238]    [c.371]    [c.280]    [c.250]    [c.288]    [c.298]    [c.226]    [c.37]   
Генетика человека Т.3 (1990) -- [ c.135 ]




ПОИСК







© 2024 chem21.info Реклама на сайте