Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия благородных газов

    Строение многоэлектронных атомов. Принцип заполнения. Принцип запрета Паули и спаривание спинов. Правило Гунда. Эффективный заряд ядра. Орбитальная конфигурация и энергия ионизации. Валентные электроны и валентные орбитали. Типические элементы, внутренние переходные металлы, переходные металлы и благородные газы. Сродство к электрону. [c.385]


    Гелий-ВО многих отношениях наиболее важный из благородных газов. При нормальном давлении он кипит при 4,2 К, что является самой низкой температурой кипения среди всех известных веществ. Жидкий гелий обеспечивает проведение многих экспериментов в условиях сверхнизких температур. Поскольку в атмосфере гелий содержится в очень незначительных количествах и имеет такую низкую температуру кипения, получение этого газа из воздуха потребовало бы слишком больших затрат энергии. Гелий содержится в сравнительно высоких концентрациях во многих газовых месторождениях. Часть гелия отделяют от природного газа для использования в различных целях, но некоторое его количество остается в природном газе. К сожалению, большая часть гелия в конце концов улетучивается в атмосферу. [c.287]

    Энергии ионизации атомов благородных газов составляют (в эВ) Не —24,6 Ке —21,6 Аг — 15,8 Кг—14,0 Хе —12,1 Рп —10,8. Объясгаггь ход нзме-неиия энергии ионизации в этой подгруппе, [c.45]

    При ЭТОМ ксенон горит в атмосфере фтора ярким пламенем. Состав получаемых продуктов окисления ксенона фтором зависит от состава исходной смеси, времени и условий взаимодействия. Синтез фторида криптона протекает сложнее. Этот процесс требует затраты энергии. Общий обзор соединений благородных газов приведен в табл. 45. [c.498]

    На внещней электронной оболочке атомы щелочных элементов имеют по одному электрону. На второй снаружи электронной оболочке у атома лития содержатся два электрона, а у атомов остальных щелочных элементов — по восемь электронов. Имея во внешнем электронном слое только по одному электрону, находящемуся на сравнительно большом удалении от ядра, атомы довольно легко отдают этот электрон, т. е. характеризуются низкой энергией ионизации (табл. 14.2). Образующиеся при этом однозарядные положительные ионы имеют устойчивую электронную структуру соответствующего благородного газа (ион лития — структуру атома гелия, ион натрия — атома неона и т. д.). Легкость отдачи внешних электронов характеризует рассматриваемые элементы как наиболее типичные представители металлов металлические свойства выражены у щелочных элементов особенно резко. [c.382]

    После окончательного заполнения 3< -орбиталей начинается заселение электронами 4р-орбиталей этот процесс ничем не нарушается и соответствует построению ряда типических элементов от галлия, Оа, с валентной структурой 3 °4. -4р до благородного газа криптона, Кг, с конфигурацией 3 °4х 4р. Первая энергия ионизации, последовательно повышавшаяся при возрастании ядерного заряда в ряду переходных металлов, резко падает у Оа, где новый электрон поступает на менее устойчивую 4р-орбиталь. [c.398]


    Аналогичная последовательность в изменении /1 наблюдается для элементов всех периодов — наименьшую энергию ионизации имеет начинающий период щелочной металл, наибольшую — завершающий период благородный газ. Во вставных декадах энергии ионизации сравнительно мало изменяются при переходе от одного элемента к другому и они выше, чем для металлов главных [c.43]

    Энергия индукционного взаимодействия, как и ориентационного, убывает пропорционально шестой степени расстояния, но индукционное взаимодействие не зависит от температуры, так как ориентация наведенного диполя не может быть произвольной, она определяется направлением постоянного диполя. Энергия / дд тем значительнее, чем выше поляризуемость неполярной молекулы и дипольный момент полярной молекулы. Индукционное взаимодействие наблюдается при образовании гидратов благородных газов, при растворении полярных веществ в неполярных жидкостях и существенно только для молекул со значительной поляризуемостью. К ним в первую очередь относятся молекулы с сопряженными связями. [c.133]

    Больщая часть перечисленных в табл. 21.4 свойств закономерно изменяется в зависимости от атомного номера элемента. В пределах каждого периода соответствующий галоген имеет почти самую высокую энергию ионизации, уступая только следующему за ним благородному газу. Точно так же каждый галоген в пределах своего периода имеет самую больщую электроотрицательность. В группе галогенов атомные и ионные радиусы увеличиваются с возрастанием атомного номера. Соответственно энергия ионизации и электроотрицательность уменьшаются в направлении от легких к тяжелым галогенам. При обычных условиях галогены существуют, как уже сказано выще, в виде двухатомных молекул. При комнатной температуре и давлении I атм 12 представляет собой твердое вещество, Вг2-жвдкость, а С12 и Р -газы. Высокая реакционная способность р2 очень затрудняет обращение с ним. Хранить Р2 можно в металлических сосудах, например медных или никелевых, так как на их поверхности образуется защитное покрытие из фторида соответствующего металла. Обращение с хлором тоже требует особой осторожности. Поскольку хлор путем сжатия при комнатной температуре можно превратить в жидкость, обычно его хранят и транспортируют в жидкой форме в стальных емкостях. Хлор и более тяжелые галогены обладают большой реакционной способностью, хотя и не такой высокой, как фтор. Они непосредственно соединяются с большинством элементов, за исключением благородных газов. [c.290]

    Экспериментальные исследования и теоретические расчеты показывают, что атомы большинства химических элементов способны присоединять лишний электрон, превращаясь при этом в электростатически отрицательно заряженные ионы. Такие процессы сопровождаются выделением определенной энергии, которая и называется энергией сродства к электрону. Совершенно так же, как и ионизационный потенциал, энергия сродства к электрону неодинакова у различных атомов. Как правило, она возрастает при увеличении ионизационного потенциала и понижается при его уменьшении отметим вместе с тем, что энергия сродства к электрону обычно возрастает с уменьшением числа свободных, незанятых электронами позиций на энергетическом уровне в частности, энергия сродства к электрону у атома фтора выше, нежели у атома бора, поскольку атом фтора на валентном уровне имеет только одну незанятую позицию, а у атома бора на том же уровне — пять. У атомов благородных газов сродство к электрону отсутствует, поскольку в них электронные слои полностью укомплектованы. [c.20]

    У элементов одного и того же периода при переходе от щелочного металла к благородному газу заряд ядра постепенно возрастает, а радиус атома уменьшается. Поэтому энергия ионизации постепенно увеличивается, а восстановительные свойства ослабевают. Иллюстрацией этой закономерности могут служить первые энергии ионизации элементов второго и третьего периодов (табл. 3.4). [c.83]

    Благородные газы заканчивают собой каждый период системы элементов. Кроме гелия, все они имеют на внешней электронной оболочке атома восемь электронов, образующих очень устойчивую систему. Также устойчива и электронная оболочка гелия, состоящая из двух электронов. Поэтому атомы благородных газов характеризуются высокими значениями энергии ионизации и, как правило, отрицательными значениями энергии сродства к электрону. [c.492]

    Взаимодействие между частицами, приводящее к образованию полимерных молекул и структур. Так, в результате действия сил Ван-дер-Ваальса между атомами благородных газов или между молекулами О2, N2, СЬ и другими эти вещества могут существовать в жидком состоянии. Энергия этих взаимодействий может достигать 20 кДж/моль. [c.120]

    Вандерваальсовы связи в молекулярных кристаллах и жидкостях обычно тем сильнее, чем больше размеры атомов и молекул. Например, при переходе к благородным газам с большими порядковыми номерами прочность вандерваальсовой связи также возрастает это видно из сопоставления кривых потенциальной энергии для систем Не—Не и Аг—Аг, которое проводится на рис. 14-14. Притяжение между более тяжелыми атомами возрастает главным образом по той причине, что внешние электроны в них удерживаются менее прочно, и это делает возможным появление больших мгновенных и индуцированных диполей. Возрастание вандерваальсовых сил объясняет факт плавления твердого аргона при температуре — 184°С (т.е. 89 К), которая значительно выше, чем температура плавления твердого гелия. [c.616]


    Переход атомов в возбужденное состояние требует значительной затраты энергии. Гелий и неон имеют самые высокие ионизационные потенциалы и низкие температуры кипения и плавления среди благородных газов. При изучении химии благородных газов, как установлено в результате экспериментальных исследований и теоретического обсуждения полученных фактов и данных, приме- [c.349]

    В качестве восстановителей могут выступать не только металлы и металлоиды, но и такие элементарные вещества, как азот, сера, селен, хлор, бром, иод, астат, и даже благородные газы — криптон, ксенон и радон. Восстановительная активность элементарных веществ определяется в основном, как это видно из приведенных рассуждений, величинами энергии ионизации атома и энергии сублимации вещества— чем эти величины меньше, тем сильнее восстановительная активность элементарного веш,ества. [c.46]

    Общая закономерность, наблюдаемая во втором периоде периодической системы, заключается в том, что каждый новый электрон в атоме следующего элемента удерживается более прочно из-за увеличивающегося заряда ядра. Поскольку остальные 25- и 2р-электроны находятся приблизительно на таком же расстоянии от ядра, как и добавляемый электрон, он практически не экранируется ими от последовательно возрастающего положительного заряда ядра. Этот возрастающий заряд оказывает на появляющийся в атоме фтора, Р, пятый 2р-электрон больщее влияние, чем увеличивщееся межэлектронное отталкивание. Поэтому пятый р-электрон в атоме Р удерживается очень прочно и первая энергия ионизации снова возрастает. Наиболее устойчивая конфигурация образуется при появлении щестого 2р-электрона, завершающего оболочку с п = 2, в атоме благородного газа неона, Ые  [c.395]

    Энергия межмолекулярного притяжения не ограничивается слагаемыми /др, 0 , . Для таких неполярных веществ, как Ые и Аг, оба этих слагаемых равны нулю, тем не менне благородные газы сжижаются, что свидетельствует о наличии еще одной составляющей межмолекулярных сил. [c.145]

    Выше было показано (см. стр. 499), какую важную роль играют гидроксильные группы на поверхности окислов в отношении адсорбции молекул, имеющих дипольиые и квадрупольные моменты или зг-электронные связи. Поэтому увеличение концентрации гидроксильных и других активных функциональных групп на поверхности адсорбента (гидратация поверхности окислов, окисление саж) увеличивает энергию адсорбции таких молекул, мало изменяя энергию адсорбции молекул с более симметричными электронными оболочками (благородные газы, ССи, насыщенные углеводороды). Наоборот, удаление таких активных функциональных групп (дегидроксилирование поверхности окислов, графитированне саж) снижает адсорбцию молекул, имеющих дипольиые к каад-рупольные моменты или и-электронные связи, мало изменяя адсорбцию молекул с более симметричными электронными оболочками. [c.503]

    Решение. С ростом порядкового номера благородных газов увеличиваются размеры их атомов при сохранении аналогично структуры внешнего электронншо слоя атома. Поэто.му поляризуемость атомов возрастает, вследствие чего возрастают к силы дисперсионпого взамодействия между ними отрыв атомов друг от друга, происходящий при переходе вещества из жидкого в газообразное состояние, требует все большей затраты энергии Эю и приводит к повышению температуры кипения. [c.72]

    Самый внещний электрон в атоме каждого элемента третьего периода связан менее прочно, чем самый внешний электрон в атоме соответствующего элемента-аналога из предшествующего периода, потому что электроны с п = Ъ находятся дальше от ядра, чем электроны с п = 2. Вследствие этого первая энергия ионизации для элементов третьего периода (с валентными электронами на уровне п = 3) оказывается меньше, чем у соответствующих элементов второго периода (с п = 2). Когда завершается заполнение 35- и Зр-орбиталей, снова образуется чрезвычайно устойчивая электронная конфигурация благородного газа аргона, Аг. [c.396]

    Полную вандерваальсову потенциальную энергию можно количественно сравнить с энергией обычных ковалентных связей, рассматривая системы, для которых известны точные кривые зависимости потенциальной энергии от межатомного расстояния г. Значения постоянных параметров а, Ь тл в выражении (14-3) могут быть вычислены из экспериментальных данных по отклонению свойств реальных газов от свойств идеального газа. В качестве примера в табл. 14-2 приведены значения этих параметров для взаимодействий между атомами благородных газов. [c.614]

    Строение внешних электронных оболочек атомов щелочных металлов пх. Поэтому они имеют низкие энергии ионизации, уменыиаюищеся при переходе по подгруппе элементов сверху вниз. При этом ослабление связн электрона с ядром вызывается ростом радиуса атома (обусловленного увеличением главного квантового числа внешнего электрона) и экранированием заряда ядра предшествующими внешнему электрону оболочками. Поэтому данные элементы легко образуют катионы Э+, имеющие конфигурацию атомов благородного газа. [c.300]

    Переход электрона из оболочки атома благородного газа иа более высокий энергетический уровень требует такой затраты энергии, которая не может быть компеиспрована образованием связи, поэтому щелочные металлы не проявляют других степеней. окпсления, кроме 4-1- [c.300]

    Ван-дер-ваальсовы молекулы. Поскольку энергия межмолекулярного взаимодействия во многих случаях не превышает 1000— 2000 Дж/моль, соединения за счет сил Ван-дер-Ваальса обычно не образуются. Этому препятствует тепловое движение 1/ . кТ). Однако при низких температурах, если /о кТ, удается обнаружить комплексы, такие, как гидраты благородных газов, частицы типа Аг2, Хез, АгНС1, АгЫг и др. Такие молекулы, образовавшиеся за счет ван-дер-ваальсового взаимодействия, называют ван-дер-вааль-совыми. Для них характерны большие равновесные расстояния и очень малые энергии связи. В принципе ван-дер-ваальсово соединение могут образовывать любые две молекулы, если Уд кТ. [c.136]

    Итак, среди свободных атомов различных химических элементов наиболее стабильной электронной конфигурацией обладают атомы гелия (ls ) и атомы остальных благородных газов (пз пр ). Можно ожидать, что атомы других химических элементов стрюмятся приобрести электронную конфигурацию ближайшего благородного газа как отвечающую минимуму энергии и, следовательно, наиболее стабильную. Например, это становится возможным при образовании электронных пар, в одинаковой мере принадлежащих соединяющимся атомам и взаимодополняющих их электронные орбитали до устойчивой конфигурации типа ls или пs лp . Так образуются, например, все двухатомные молекулы простых веществ  [c.31]

    Более высокая химическая активность криптона, ксенона и радона по сравнению с первыми членами группы благородных газов объясняется относительно низкими энергиями ионизации их атомов (см. табл. 20.1). Для криптона, ксенона и радона эти величины близки к энергиям ионизации некоторых других э.пемен-тов (например, энергия ионизации атома азота равна 14,53 эВ, атома хлора — 12,97 эВ). [c.495]

    С помощью этого метода Фокс и сотрудники [296] измерили потенциалы появления атомарных ионов благородных газов, молекулярных ионов простых молекул, а также уточнили и определили новые электронные уровни возбуждения, соответствующие энергиям отрыва электрона с разных молекулярных и атомных орбит. Метод квазимонокинетизации был применен В. Л. Тальрозе и Е. Л. Франкевичем [298] для изучения иономолекулярных реакций в газовой фазе и определения сродства к протону ряда молекул. Исследование процессов диссоциативной ионизации октана, октаиа-2-0 и нонана-С з позволило В. К. Потапову и соавторам [94] впервые обнаружить тонкую структуру кривых вероятности появления (С Н2п+1) и ( H2n) связанную с различными процессами их образования. Можно предположить, что осколочные ионы (СпНгп)" выделяются из середины молекулы с одновременным соединением концов цепи в новую молекулу углеводорода. Высота активационного барьера этих реакций [c.179]

    Мы уже неоднократно отмечали, что для элементов группы 8А характерна химическая инертность. До сих пор мы обсуждали главным образом физические свойства этих элементов, как, например, при изучении межмолекулярных сил в разд. 11.5, ч. 1. Согласно теории химической связи Льюиса, высокая инертность благородных газов обусловлена наличием в валентной оболочке их атомов полного октета электронов. Устойчивость такой валентной э [ектронной оболочки проявляется в высоких энергиях ионизации элементов группы 8А (см. разд. 6.5, ч. 1). [c.286]

    Поскольку благородные газы чрезвычайно инертны, следует ожидать, что, если они и способны вступать в реакции, то лишь в очень жестких условиях. Далее, следует ожидать, что способность к химическим превращениям в первую очередь должны проявлять наиболее тяжелые благородные газы, поскольку они обладают более низкими энергиями ионизации, как это видно из рис. 6.6, ч. 1. Более низкая энергия ионизации предполагает возможность потери атомом электрона при образовании ионной связи. Кроме того, поскольку элементы группы 8А уже содержат в своей валентной оболочке восемь электронов (за исключением гелия, в атоме которого всего два электрона), образование ими ковалентных связей возможно лишь с участием орбиталей из надва-лентной оболочки. Но, как известно (из разд. 7.7, ч. 1), этой способностью обладают главным образом атомы более тяжельос элементов. [c.287]

    Прочность связи ме5кду электроном и ядром. Энергия ионизации. Правило октета. Инертные (благородные) газы. Электроотрицательность [c.48]

    Таким образом, электростатическое притяжение нейтральных атомов должно характеризоваться наличием равнонесного рас стояния, при котором энергия системы будет минимальной Однако это притяжение нейтральных атомов не может иметь сун е ственного значения для объяснения химического взаидюдействия Прежде всего электростатическое притяжение должно существо вать между двумя любылш нейтральными атомами, в том числе и атомами благородных газов. Кроме того, к двум приблизив шимся атомам должны притягиваться третий и четвертый. Таким образом, электростатическое притяжение нейтральных атомов не обладает свойством насыщаемости. [c.468]

    Общая характеристика. Внешняя электронная конфигурация атомов лантаноидов может быть представлена формулой 4/"5s 5p 5d 6s где п изменяется от О до 14, а т может принимать только два значения О и 1-. Для описания электронной конфигурации лантаноида достаточно указать лишь число 4/- и 5 -электронов, число же остальных электронов остается без изменения. Электронные подуровни 4/ и Ьё, довольно близки гю энергии и при известных условиях может происходить взаимный переход электронов. Основная степень окисления +3 в редкоземельном ряду осуществляется за счет двух электронов б5, одного 5й для 0с1 и Ьи и одного 4/-элект-рона для остальных лантаноидов. Значительно реже некоторые из них могут проявлять степени окисления +2 и +4. При этом наблюдается внутренняя периодичность в изменении степеней окисления (см. 4.4). В целом у атомов лантаноидов с увеличением порядкового номера проявляется общая тенденция, состоящая в замене конфигураций типа 4/ 5d конфигурациями типа 4/ 5й . Для последних членов ряда лантаноидов большая прочность связи 4/- по сравнению с 5й -эл8ктронами проявляется особенно отчетливо. У ионизированных атомов тенденция эта проявляется сильнее, чем у нейтральных атомов. Все лантаноиды образуют устойчивые ионы Э " , однако шесть из них могут проявлять и другие степени окисления +4 (Се, Рг, ТЬ) и +2 (5т, Ей, УЬ). Электронные конфигурации ионов можно представить общей формулой 4/"55 5р . Электроны 5s 5/7 экранируют 4/-электроны от влияния внешних полей, поэтому поведение ионов лантаноидов во многих отношениях напоминает поведение других ионов с внешней оболочкой благородных газов. [c.358]

    Окислительной способности, как известно, лишены металлы и благородные газы. Окислительная активность элементарного вещества тем больше, чем больше энергия сродства к электрону соответствуЕО-щих атомов и чем меньше энергия диссоциации молекул элементарных окислителей. Очевидно, что каждый период начинается элементарными [c.50]

    Аналогичная последовательность в изменении / наблюдается для элементов всех периодов - наименьшую энергию ионизации имеет начинающий период щёлочной металл, наи льшую - завершающий период благородный газ. У элементов вставных декад энергии ионизации сравнительно мало изменяются при переходе от одного элемента к другому и они выше, чем для металлов главных подгрупп. Это обусловлено тем, что при одинаковом числе электронных слоев заряд ядер атомов элементов побочных подгрупп больше. [c.47]

    Как уже говорилось выше, водород также можно присоединить к галогенам, так как он может образовать ионы Н", которые, как и ионы галогенов (F , l", Вг, I, At ), изоэлектронны атомам благородных газов (соответственно Не, Ne, Аг, Кг, Хе, Rn). К этому признаку сходства можно добавить газообразное состояние водорода, двухатомность его молекул, легкость замещения водорода в органических соединениях галогенами, близость энергий разложения молекул На и Hal2, соизмеримость потенциалов ионизации водорода и первых потенциалов ионизации галогенов и т, д. Разумеется, нельзя не учитывать отличие водорода от галогенов (оно обусловлено тем, что галогены как р-элементы образуют соединения, в которых имеют степень окисления больше единицы). Однако аналогия в свойствах водорода и галогенов более значительна, чем в свойствах водорода и металлов (см. стр. 90). Есть еще один серьезный довод в пользу этого утверждения — результаты применения методов сравнительного расчета. На одном примере это иллюстрируется рио. 37 на нем сопоставлены температуры и теплоты плавления в ряду галогенов точка для водорода оказалась на одной прямой о точками для гало- [c.95]


Смотреть страницы где упоминается термин Энергия благородных газов: [c.668]    [c.408]    [c.642]    [c.117]    [c.117]    [c.136]    [c.50]    [c.357]   
Современная общая химия Том 3 (1975) -- [ c.339 ]

Современная общая химия (1975) -- [ c.339 ]




ПОИСК





Смотрите так же термины и статьи:

Газ благородные

Газы благородные

Прочность связи между электроном и ядром. Энергия ионизации. Правило октета. Инертные (благородные) газы. Электроотрицательность



© 2025 chem21.info Реклама на сайте