Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбционная межфазная смачивание

    Область применимости уравнения (13.2) ограничена такими значениями толщины смачивающих пленок, когда их еще можно считать частью утончившейся жидкой фазы. При плохом смачивании (0о 9О°) на твердой поверхности образуется двухмерная адсорбционная фаза толщина, пленок не превышает монослоя. Здесь применимо другое выражение, вытекающее из уравнения Гиббса, связывающего величину адсорбции молекул (Г) с изменением межфазного натяжения (osi/) в зависимости от давления пара адсорбата р [45]  [c.218]


    Эти процессы в значительной степени зависят от адсорбционной способности поверхностно-активного вещества и применительно к пластовым системам могут быть качественно и количественно охарактеризованы изменением межфазного натяжения в системе нефть — вода Он-в и косинусом краевого угла смачивания горной породы водой os 0 в зависимости от концентрации ПАВ, например, в воде. [c.67]

    Пусть первоначально поверхность гидрофобна. Поместим на плоскую поверхность каплю раствора ПАВ. Вследствие адсорбции на межфазной границе Т—образуется адсорбционный слой молекул (ионов) ПАВ, обращенных неполярной частью к поверхности твердого тела, а полярной (гидрофильной) частью в воду. Образование такого монослоя вызывает гидрофилизацию первоначальной поверхности. Межфазное натяжение на границе Т—Зтж понижается, и, согласно уравнению Лапласа, смачивание увеличивается  [c.162]

    Коллоидно-химические свойства латексов существенно зависят от физико-химических свойств эмульгаторов, на которых они приготовлены. Одно из таких свойств — адсорбционная активность эмульгаторов на межфазной границе каучук — водная среда. Непосредственно измерить адсорбцию на этой границе невозможно. Некоторое представление об адсорбционных свойствах эмульгаторов можно получить, измеряя смачивание каучуковых поверхностей растворами эмульгаторов. Такого рода эксперимент есть попытка моделирования адсорбционного взаимодействия эмульгаторов с поверхностью каучуковых глобул. [c.163]

    Для того чтобы объяснить, каким образом ПАВ способствуют удалению загрязнений, необходимо рассмотреть силы, удерживающие загрязнение на субстрате, и явления, происходящие в процессе мытья. В состав загрязнения могут входить масляные жидкости, способные течь и, следовательно, изменяющие свою форму при удалении с поверхности субстрата (остатки пота на одежде или остатки жирной пищи на посуде), и частицы твердых веществ, переходящие в моющий раствор без изменения формы (например, сажа и окислы металлов). Хотя многие явления, участвующие в процессах удаления обоих видов загрязнений, одни и те же, каждый из них имеет и важные отличительные особенности. Возьмем, например, сухую ткань, содержащую твердое загрязнение (в данном случае загрязнение удерживается на поверхности материала вандерваальсовы-ми силами притяжения). Если погрузить ее в водный раствор ПАВ и начать перемешивать, то частицы загрязнения будут механически отрываться от поверхности ткани и переходить в раствор. Вслед за этим происходит смачивание тех участков поверхности ткани и частиц загрязнения, которые ранее находились в контакте друг с другом. В результате смачивания водным раствором ПАВ эти участки, как и остальная поверхность ткани и твердых частиц, приобретают электрический заряд, обусловленный адсорбцией на них ионов из раствора или ионизацией поверхностных полярных групп. Поскольку анионы адсорбируются легче, чем катионы, в большинстве случаев поверхность очищаемого материала становится отрицательно заряженной. Возникающий адсорбционный заряд частично нейтрализуется противоположным по знаку зарядом диффузного слоя противоионов, находящихся в растворе вблизи межфазной поверхности. Таким образом, на каждой поверхности образуется двойной электрический слой, а так как поверхности и ткани, и частиц загрязнения обычно заряжаются отрицательно, [c.511]


    При адсорбции на адсорбентах, имеющих достаточно развитую систему переходных пор, а также на непористых адсорбентах адсорбционный объем, вообще говоря, является функцией состава раствора. Причина этого, как показано в [8, 9], заключается в неидеальности взаимодействия растворенных веществ. Для бинарного раствора, параметры адсорбционного слоя которого задаются величинами V, У°, У , необходимо иметь три уравнения, связывающие эти величины с экспериментально определенными избытками. В качестве третьего независимого уравнения можно использовать предложенное Ларионовым [10] уравнение, связывающее свободную энергию смачивания (или изменение межфазного натяжения на границе раздела раствор—твердое тело) с параметрами адсорбционного слоя, [c.127]

    Полимеры должны обеспечивать смачивание поверхности субстрата, межфазный контакт между адгезивом и субстратом и межфазное или адсорбционное взаимодействие на границе двух фаз (полимер — твердое тело). Физико-химические аспекты этих явлений обстоятельно изложены в работах [2—4, 9]. Смачивание связано с соотношением поверхностных энергий клеящего полимера и субстрата для достижения хорошего смачивания и хорошей адгезии необходимо, чтобы поверхностное натяжение субстрата было больше поверхностного натяжения полимера. Пользуясь для оценки поверхностного натяжения параметром критического поверхностного натяжения, можно констатировать, что с увеличением критического поверхностного натяжения возрастает прочность клеевых соединений при прочих равных условиях. [c.8]

    В некоторых системах уменьшение плотности поверхностной упаковки молекул вызывает уменьшение краевых углов. Такие эффекты наблюдались, например, при смачивании адсорбционных монослойных пленок органических веществ после замены нормальных гомологов на разветвленные изомеры. Улучшение смачивания объясняется тем, что более рыхлая структура монослоя из разветвленных молекул облегчает диффузионное проникновение молекул жидкой фазы, что в свою очередь способствует снижению межфазного поверхностного натяжения [4]. С этой точки зрения можно также объяснить, почему при контакте одной и той же жидкости с адсорбционными монослоями различных гомологов одного ряда (например, с жирными кислотами) краевые углы обычно возрастают с увеличением молекулярной массы гомолога с увеличением длины цепи затрудняется диффузия молекул жидкости и вместе с тем повышается степень упорядочения ( кристалличность поверхностного слоя). Оба эти обстоятельства способствуют повышению межфазной поверхностной энергии и тем самым вызывают ухудшение смачивания [4, 33]. [c.100]

    Преимущества метода нескольких жидкостей очевидны. Помимо повышения определенности условий равновесия в многофазной системе, что позволяет получать более точное решение уравнения (36) применительно к адгезии полимеров, смачивание субстрата двумя или тремя не смешивающимися друг с другом жидкостями приводит к меньшему загрязнению исследуемой поверхности, т. е. к нивелированию влияния факторов адсорбционной природы [294]. Однако, как и в других случаях, связанных с привлечением уравнения Юнга, существенные экспериментальные затруднения здесь обусловлены необходимостью измерения краевых углов. В самое последнее время предпринята попытка устранить этот недостаток. Авторы [295], погружая углеродные волокна вертикально в две несмешивающиеся жидкости-формамид с налитым сверху углеводородом (гексан, гексадекан, декалин), по аналогии с приведенными выше выражениями записали следующее уравнение межфазного взаимодействия  [c.70]

    Вид металла, способ его введения и вариации технологических режимов карбонизации волокон определяют структуру, элементный и фазовый состав формирующихся Ме-УВ, позволяют в широких пределах регулировать их свойства Металлосодержащие включения в составе Ме-УВ в виде оксидов, карбидов, высокодисперсных (3-20 нм) восстановленных металлов придают им высокие адсорбционно-каталитические свойства в ряде химических реакций, улучшают смачивание волокон различными видами связующих, влияют на характер взаимодействия реагирую1Ш1Х компонентов на границе раздела фаз волокнистый наполнитель-полимер. Структурно-активные фуппы Ме-УВ могут служить центрами кристаллизации полимеров, ориентировать макромолекулы в гюверхностном слое, изменяя структуру и свойства межфазного слоя и в целом всего армированного волокнами композита. [c.182]

    Практическое использование коллоидных поверхностноактивных веществ связано со следующими свойствами их растворов высокой поверхностной активностью способностью улучшать смачивание различных материалов эмульгирующим действием солюбилизацией способностью образовывать прочные поверхностные слои на жидких и твердых поверхностях склонностью к образованию гелей. Во многих случаях эффективность применения веществ определяется несколькими факторами одновременно. Например, многочисленными работами П. Н. Ребиндера с сотр., Б. Н. Тютюнникова, Дж. Мак-Бэна и других исследователей показано, что моющее действие определяется способностью коллоидных поверхностно-активных веществ смачивать ткани, снижать межфазное натяжение, образовывать прочные адсорбционные слои, солюбилизировать жировые загрязнения. [c.172]


    ВИИ высоких температур. Показано, что в зависимости от природы модифицирующих компонентов, возможно формирование регулярных структур, обеспечивающих получение покрытий с заданными характеристиками (твёрдость, влагопоглощение, вязкость и другие свойства).Оптимизированы составы композиционных материалов на основе аминоформальдегидных олигомеров и хлорированных полимеров модифицированных четвертичными аммониевыми основаниями, алкилсульфонатами, карбоксиметилцел-люлозой и фосфатами аммония. Исследованы процессы межфазного взаимодействия на границе раздела модифицированное связующее - наполнитель. Показано, что введение в состав композиции модифицирующих добавок приводит к увеличению адсорбционного взаимодействия и смачивания и улучшает комплекс технологических и эксплуатационных характеристик. Исследовано влияние высоких температур на огнезащитные свойства разработанных материалов. Установлено, что наибольший коэффициент вспучивания и наилучшие огнезащитные свойства имеют композиционные материалы, содержащие в качестве основных компонентов - аминоальдегидный олигомер и поливи-нилацетат, а в качестве вспучивающих систем - фосфаты аммония и уротропин - хлор-сульфированный полиэтилен, модифицированный хлорпарафинами, а в качестве вспучивающих компонентов - полифосфат аммония и пентаэритрид. Разработаны технологические процессы получения огнезащитных материалов. Получены покрытия на субстратах различной природы (дерево, металл, кабельные покрытия) и разработана технология их нанесения. Проведен комплекс натурных испытаний при действии открытого пламени. Установлено, что огнезащитные материаты на основе реакционноспособных олигомеров могут быть успешно использованы для защиты металлов, при этом коэффициент вспучивания достигает 10-20 кратного увеличения толщины покрытия при эффективности огнезащиты - 0,5 часа. Состав на основе хлорсульфированного полиэтилена успешно прошёл испытания в качестве огнезащитного покрытия кабельных изделий. [c.91]

    Часть 1 знакомит вас с дисперсными системами, являющимися основными объектами, изучаемыми коллоидной химией, и их основной особенностью — наличием большой межфазной поверхности и, как следствие, избытка поверхностной энергии. В главах 2-5 подробно рассмотрены различные виды адсорбции — самощюизвольных процессов в поверхностном слое. Этот материал важен не только вследствие большого практического значения адсорбционных процессов, но и для понимания вопросов устойчивости дисперсных систем, методов их пол5гчения и разрушения. В конце первой части описаны такие самопроизвольные поверхностные явления, как смачивание и адгезия, играющие важную роль в различных областях человеческой деятельности. [c.3]

    Время вытеснения примеси из растущего кристалла зависит от размера кристалликов. По этой и другим причинам резкое переохлаждение сплава, т. е. быстрая кристаллизация, образует мелкокристаллическую структуру, медленное охлаждение — крупнозернистую структуру. Размер кристаллов обычным образом влияет на величину удельной межкристаллитной поверхности — лeдoвaтeJU,нo, и на ее насыщенность примесными компонентами сплава. При постоянстве содержания примеси в материале ее состояние на межфазной границе может изменяться от состояния разреженного или насыщенного адсорбционного монослоя до состояния пленки (тонкой или толстой) и дисперсных частиц более или менее округлой формы. Вьщеление нримеси в виде частиц можно рассматривать как результат собирания пленки в капли при плохом смачивании кристаллов металла вьщелившейся примесной фазой. [c.591]

    Трации эмульгатора (до 40—50 мин при концентрйцйях, соответствующих верхним границам указанных выше концентрационных интервалов). В случае чистой воды изменения формы капель во времени практически не наблю дается. Это указывает на то, что кинетика смачивания связана с медленным формированием адсорбционного слоя ПАВ на межфазной поверхности раздела. [c.165]

    Особенность фторуглеводородных ПАВ — соединений с фторуглеродными и углеводородными радикалами — высокая поверхностная активность в неполярных органич. жидкостях с низкой поверхностной энергией. Производные амидов перфторкарбоновых к-т, к примеру, снижают поверхностное натяжение с 28—32 до 12—26 эрг-см . На межфазных поверхностях водный р-р — углеводородная жидкость фторзамещенные ПАВ также проявляют исключительно высокую активность. Адсорбционный слой перфторированных ПАВ на твердой поверхности, ориентированный фторуглеродными радикалами наружу, снижает критическое поверхностное натяжение смачивания (определение см. в ст. Когезия) до значений меньших, чем поверхностное натяжение углеводородных жидкостей. Это значит, что такая поверхность становится не только гидрофобной, но и олеофобной, т. е. не смачиваемой маслами и др. жидкими углеводородами. Фторуглеродные цепи, вследствие высокой энергии межатомной (внутримолекулярной) связи, химически инертны и термостойки они не разлагаются при темп-рах выше 400 °С. Поэтому термостойкость фторуглеродных ПАВ определяется полярной группой. Фторуглеродные сульфонаты, напр., устойчивы почти до 350 С, а карбоновые к-ты и их соли — до 175—250 °С. [c.337]

    Наиболее доступным способом косвенной оценки межфазной поверхностной энергии твердых тел является измерение углов смачивания. Очевид-но, что ири этом можно провести сравнительную оценку адсорбционного взаимодействия лишь для таких систем полимер — среда, для которых угол смачивания доститочно велик и может быть определен с необходимой точностью. Наиболее подходящим для этой цели могут быть растворы поверхностно-активных веществ в какой-либо неактивной по отношению к полимеру жидкости, поскольку изменение концентрации растворенного вещества позволяет определенным образом изменять адсорбционную активность раствора.,  [c.114]

    Даже при 0<9О° спонтанные процессы смачивания поверхности субстрата минимально вязким адгезивом не обеспечивают достижения близкой к максимальным значениям площади молекулярного контакта. Действительно, приложение к равновесной системе внещнего давления приводит к последующему росту угла 0. Это обусловлено сложным механизмом растекания (даже при отсутствии испарения, растворения субстрата адгезивом, протекания межфазной химической реакции и т. д.) за счет диффузионных явлений, изменения объема капли, морфологии поверхности. Строго говоря, уравнение (1) справедливо лишь для изотермо-изобари-ческого процесса смачивания макроскопических мало-сжимаемых нерастворимых тел массивной средой. Скорость растекания растет с уменьшением объема капли и снижается с ростом шероховатости поверхности, причем в основе этих эффектов лежит образование на твердой поверхности аутофильных или аутофобных по отношению к жидкой фазе адсорбционных слоев, а также изменение полярной и неполярной (дисперсионной) составляющих поверхностной энергии контактирующих фаз. В общем случае термодинамический учет этих факторов весьма сложен и определяется молярными объемами жидкой и твердой фаз, структурными параметрами по Пригожину и глубиной потенциальной функции Лен-нард-Джонса. Вследствие этого многочисленные попытки модифицировать базовое уравнение (1), приблизив его к описанию поведения полимерных систем, в лучшем случае носят полуэмпирический характер. [c.8]

    Экспериментальные данные показьшают, что с ростом ф расчетные значения изотермических тепловых эффектов АЩ < О монотонно понижаются до определенного значения при определенном ф и далее остаются практически неизменными. Это означает, что теплота взаимодействия системы полимер-наполнитель AHpf=AHi АЩ достигает предельного значения, которое, очевидно, отвечает насыщению на межфазной границе благодаря максимально возможному числу контактов сегментов цепей с активными участками поверхности наполнения. При этом для системы ПС - аэросил можно определить долю фенильных групп полистирола, адсорбционно связанных с наполнителем, если принять энергию взаимодействия фенильных групп полистирола с силанольными группами аэросила равной энергии взаимодействия последних с бензолом (Д -теплота смачивания аэросила бензолом)  [c.125]


Смотреть страницы где упоминается термин Адсорбционная межфазная смачивание: [c.509]    [c.179]   
Эмульсии, их теория и технические применения (1950) -- [ c.340 ]




ПОИСК





Смотрите так же термины и статьи:

Межфазные

Смачивание



© 2024 chem21.info Реклама на сайте