Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Носители алюмосиликатные

    Гидратация и дегидратация. Все катализаторы этого класса имеют сильное сродство к воде. Главный представитель этй Ь класса—глинозем. Применяется также фосфорная кислота или ее кислые соли на носителях, подобных алюмосиликатному гелю и силикагелю с окислами тантала, циркония или гафния. [c.313]

    Указанный метод состоит в том, что носитель (сорбент) растворяется в расплаве ванадатов щелочных металлов, меняя ири этом свою макроструктуру. Это было установлено при создании износоустойчивого ванадиевого катализатора КС для окисления сернистого ангидрида во взвешенном слое. Этот катализатор был получен путем пропитки носителя — алюмосиликатного катализатора крекинга — раствором солей ванадия с последующей его термической обработкой [89—94, 147—149, 153]. Как известно, алюмосиликатный катализатор крекинга — материал, имеющий вполне определенную, сформировавшуюся глобулярную пористую структуру [84, 122]. Радиус большинства иор составляет единицы и десятки ангстрем. При прокаливании пропитанного соединениями ванадия (например, КУОз) алюмосиликата, структура его изменяется следующим образом радиус иор увеличивается на 1—3 порядка при пропорциональном уменьшении удельной поверхности суммарный же объем изменяется очень незначительно. Результаты, свидетельствующие о трансформации структуры алюмосиликата, представлены на рис. 33. Данные отражают средние результаты многочисленных серий опытов. [c.86]


    Х10 — носители алюмосиликатные, шариковые. [c.383]

    В то же время имеются данные о возможности применения никелевого катализатора на алюмосиликатном носителе (см. табл. 30, № 20). Содержание окиси кремния в таком катализаторе значительно превышает указанную норму. Из опыта крекирования нефтепродуктов известно, что алюмосиликатный катализатор проявляет большую активность при расщеплении углеводородов, чем окись кремния. Тем не менее такой катализатор стабильно работал более четырех месяцев при конверсии бензина, содержащего менее 0,0001 % серы (по другим данным переработка бензина с таким малым содержанием серы сопровождается зауглероживанием катализатора). [c.48]

    В катализаторе содержится 15% никеля на алюмосиликатном носителе. Он сохраняет стабильность более четырех месяцев [c.169]

    Прямая гидратация. Основными трудностями при промышленном осуществлении прямой гидратации этилена являются достижение оптимального выхода этилового спирта на единицу объема катализатора в 1 ч и подбор такого катализатора, который сохранял бы активность в течение длительного времени (ортофосфорная кислота на алюмосиликатном носителе катализатор на основе гетерополикислот вольфрама или молибдена и т. д.). [c.199]

    Алюмосиликатный носитель через шлюзовый питатель с двигателем переменного тока по течке поступает в кипящий слой носителя в количестве 85 кг/ч. Его начальная влажность 15%. В кипящем слое происходит удаление влаги до 2,5% и прокалка посителя. [c.201]

Рис. 68. Печь КС для прокаливания и охлаждения алюмосиликатного носителя катализатора КС Рис. 68. Печь КС для прокаливания и охлаждения алюмосиликатного носителя катализатора КС
    Техническая характеристика шахтной печи для термообработки ванадиевого катализатора КС на алюмосиликатном носителе производительностью 100 кг/ч по влажному катализатору приведена в табл. 28. [c.205]

    Изучению кислотных свойств алюмосиликатных и цеолитовых носителей посвящена обширная литература (см. обзоры ), рас- [c.124]

    Катализаторы процесса представляют собой окислы металлов переменной валентности (хрома, молибдена, ванадия), которые наносятся на пористый алюмосиликатный носитель, содержащий окись кремния и окись алюминия в массовом соотношении 90 10. В промышленности в качестве катализатора чаще всего применяют окислы хрома. Катализатор готовят пропиткой алюмосиликатного носителя водным раствором хромовой кислоты (СгОз + НгО) с последующей сушкой и активацией. [c.9]


    Бифункциональный механизм доказан на примере катализаторов содержащих только кислотные центры или центры дегидрирования или же на механической смеси центров обоих типов. Например, е одинаковых условиях (Т = 373 С, молярное соотношение водород н-гексан=5 1, пылевидные частицы) как на катализаторах платина/силикагель, платина/углеродный носитель, так и на алюмосиликатном (кислотном) катализаторе изомеризация гексана или гептана происходит в незначительной степени. В то же время механическая смесь этих пылевидных катализаторов довольно активна (табл. 6.2). [c.139]

    АЬОз и — АЬОз—5102, приведенных выше. Влияние гидрирующего компонента катализатора на алюмосиликатном носителе на степень изомеризации продуктов гидрокрекинга н-декана при 8,35 МПа и 228 °С видно также из следующих данных  [c.278]

    Механическая прочность при истирании железохромового катализатора на алюмосиликатном носителе на 10—15% ниже таковой для алюмосиликатного катализатора крекинга нефтепродуктов, а активность на 10—20% ниже активности железохромового катализатора марки 482. [c.195]

    По современным представлениям, силикагели, алюмогели, аморфные алюмосиликатные катализаторы имеют не пластинчатое, а корпускулярное строение, т. е. состоят из сросшихся непористых первичных частиц шаровидной формы. Первичные частицы в зависимости от способа получения геля могут быть разных размеров и упакованы с различной плотностью. Зазоры между первичными частицами представляют собой поры катализатора эффективными диаметрами пор являются наиболее узкие места этих зазоров (горла пор). У носителей и катализаторов диаметры пор близки к размерам первичных частиц. [c.54]

    Ванадиевый на бариево-алюмосиликатном носителе для окисления ЗОг . ....... [c.93]

    Ванадиевый на алюмосиликатном носителе для окисления 80г в кипящем слое. . . Окисно-железный для окисления ЗОг. ... [c.93]

    Ванадиевый катализатор [29—321 готовят методом пропитки солями ванадия и калия алюмосиликатного носителя, в качестве которого выбраны отходы промышленного катализатора крекинга с размерами частиц 0,5—1 мм или 1—2 мм, в зависимости от условий эксплуатации катализатора в производстве серной кислоты. [c.146]

    Если разбавленная суспензия с концентрацией твердой фазы <1% содержит гелеобразные коллоидные частицы (например, пропиточный раствор, подаваемый на регенерацию в производстве ванадиевого катализатора КС на алюмосиликатном носителе) ее фильтруемость обычно соответствует баллу 1. Фильтрование такой суспензии необходимо проводить на фильтрах с намывным слоем вспомогательного вещества. [c.215]

    На рис. 101 показана прокалочная печь с конвективно-радиационным нагревом кипящего слоя алюмосиликатного носителя. [c.254]

    ХОО — носители и адсорбенты алюмосиликатные, аморфные, синтети- [c.383]

    Изомеризация алкилароматических углеводородов. В мировой практике получили развитие два промышленных способа изомеризации алкилароматических углеводородов С при атмосферном давлении на алюмосиликатных катализаторах и при повышенном давлении на катализаторах, которые содержат металл, нанесенный на носители с кислотными свойствами. [c.92]

    При использовании катализаторов гидрокрекинга, отличающихся повышенными расщепляющими свойствами (различных композиций никеля, молибдена, платины на алюмосиликатных носителях), особенно в производстве бензина, большую роль играют параметры процесса, от которых непосредственно зависит стабильность работы катализатора [47—52]. [c.258]

    Активность бифункционального катализатора при применении в качестве носителя цеолитов резко повышается. Так, условная константа скорости разложения фракции 195—460° С (гидрогенизата после первой ступени гидрокрекинга) при 400° С для обычного алюмосиликатного носителя — 0,151, а для цеолита — 1,205, т. е. в восемь раз больше . Повышенную активность цеолита, так же как и в процессах каталического крекинга, очевидно, можно объяснить более высокой концентрацией активных кислотных центров. [c.270]

    По мере роста молекулярной массы фракций полнота удаления азотсодержащих соединений уменьшается. На нее влияют также состав катализатора и носитель. При гидрокрекинге в присутствии дисульфида вольфрама на алюмосиликатном носителе азотистые соединения в сырье частично подавляют реакции изомеризации вследствие образования аммиака и аминов. В промышленных процессах гидроочистки котельных и дизельных топлив и смазочных масел желательно достигнуть полного удаления осноВ НЫх азотсодержащих соединений, которые, как известно, являются причиной нестабильности нефтепродуктов — ухудшения цвета и образования нерастворимых осадков при хранении.- [c.213]

    Полиэтилен получают разными методами. По основному методу полимеризация проводится при температуре 190 °С и давлении 1500 ат, катализатором служит кислород в количестве 100—200 частей на миллион. В другом процессе этилен растворяют в углеводороде в раствор добавляют катализатор СГ2О3 на алюмосиликатном носителе температура процесса 93—150 °С, давление от 7 до35ат. Суспензия содержит около 5% этилена и 0,5% катализатора. По-новому, недавно появившемуся методу этилен [c.333]


    Катализаторы, полученные нанесением никеля на алюмосиликатный носитель и содержащие 15—20 % никеля, в процессе гидрирования действовали подобно промышленному никель-кизельгуровому каталиВатору, уступая, однако, ему в активности. Длительная их служба окааалаЬь невозмогкной при гидрировании нродуктов контактного крекинга мазута и гудрона, так как после воздушной регенерации они теряли свою активность. Последняя условно оценивалась нами следующим образом. Над катализаторо. [ в течение 3 ч гидрировался бепзол нри температуре 180 °С и объемной скорости подачи сырья 0,2 ч процент превращения бензола для све кего катализатора брался за 100 %-пую первоначальную активность. В посл( дующих определениях активность выражалась в процентах первоначальной активности. Целесообразность такой оценки диктовалась тем, что от синтезируемых нами катализаторов требовалась способность гидрировать не только олефиновые двой-ПЕ.[е связи, но и ароматическое ядро. [c.262]

    Синтетические алюмомагнийсиликатные катализаторы при формовании микросфер или крупных шариков получают совместным осаждением гидрогелей окиси кремния и окиси магния с последующей активацией их раствором сернокислого алюминия. Эти катализаторы выгодно отличаются от алюмосиликатных высокой паротермостабиль-ностью. Они могут быть использованы также как носители для катализаторов полимеризации этилена. [c.14]

    II выше. Алюмомагнийсиликатные катализаторы обладают более высокой регенерационной способностью, так как на их поверхности горение кокса протекает гораздо интенсивнее, чем на алюмосиликатных катализаторах, и имеют высокую паротермостабильность в реакциях крекинга нефтепродуктов. Алюмомагнийсиликатные катализаторы могут быть использованы также как носители при приготовлении окиснохромовых катализаторов для полимеризации этилена. [c.97]

    Чувствительность катализаторов к воздействию высоких температур связана с рядом различных явлений. Прежде всего повышение температуры размораживает дефекты решетки катализаторов (как полупроводниковых, так и металлических), приближая систему к равновесию. Такое изменение дефектного состояния решетки неизбежно приводит к изменению активности катализатора в большинстве случаев к ее понижению [47 ]. Далее, повышение температуры и приближение ее к температуре плавления материала вызывает значительное ускорение самодиффузии в твердом веществе и, как следствие этого, — яв.чение спекания, приводящее к уменьшению поверхности катализатора. Как указывалось ранее, это во многих случаях приводит к понижению активности катализатора. Примеров такого рода явлений описано очень много можно указать на работу Борескова с сотрудниками но катализатору парофазного гидролиза хлорбензола [48 ] и работу Битенаж по алюмосиликатным катализаторам [49]. Еще одним следствием повышения температуры может быть превращение каталитически активных соединений в неактивные. Например, при температуре выше 500° С в смешанном катализаторе окисления нафталина во фталевый ангидрид происходит взаимодействие сульфата калия с сульфатом ванадия и образуется каталитически неактивный ванадат калия. Кро е указанных явлений, при высоких температурах может происходить растрескивание или расплавление всей массы катализатора, или носителя. [c.199]

    Пример 15. В реакторе со взвешенным слоем серебряного катализатора (нанесенного на алюмосиликатный носитель) ведется процесс неполного окисления метана природного газа с целью получения формальдегида. Начальный состав газовой смеси [природный газ, содержащий 97,17о (об.) СН4, с добавлением воздуха], % (об.) СН4 — 26,5 О2—14,8 N2 — 58,7. Конечный состав газовой смеси (после извлечения растворимых продуктов реакций), %(об.) СН4 — 25,8 О2—11,8 СО2 — 0,2 СО — 0,4 С Нт — 0,2 Нг—1,0 N2 — 60,5. Объемная скорость газа Уоб = = 3000 ч температура в зоне реакции 750°С. На 1 м природного газа получается 30 г СНгО и 3,4 г СН3ОН. Диаметр реактора 1 м. Частицы катализатора сферические, средний диаметр ер = 1,5 мм. Плотность катализатора рт= 1200 кг/м Плотность газа рг = 1,215 кг/м (в рабочих условиях). Вязкость газа Хг = 1,835-10-5 Па-с (в рабочих условиях). [c.135]

    Печь КС с конвектшно-рпдиационным нагревом предназначена для прокалки и охлаждения алюмосиликатного носителя катализатора КС в кипящем слое с радиационным нагревом, [c.201]

    На стадии окисления требуются точная регулировка подачи воздуха и тщательное перемешивание реагентов на входе в реактор с катализатором селектокс. Последний представляет собой окснд ванадия (или сульфид ванадия), нанесенный на нещелочной пористый тугоплавкий оксид. Типичный катализатор состоит из 1...30% (желательно 5... 15%) ванадия в оксидной или сульфидной форме. В качестве носителя используют алюминий, титан, кремний, цирконий, а также их различные комбинации, фосфаты кислых металлов, арсенаты, кристаллические или аморфные алюмосиликатные водородные цеолиты. [c.175]

    Принципиальная схема производства ванадиевого катализатора представлена на рис. 70. Частицы алюмосиликатного катализатора крекинга в виде шариков или крошки поступают на двухситовой грохот 2, где отсеивается нужная фракция. Отсеянный носитель [c.146]

    На рис. 102 приведена зависимость степени конверсии окиси углерода с водяным паром от содержания СГ2О3 в железохромовой (РедОз Сг-зОз) катализаторной массе, внесенной в поры алюмосиликатного носителя. Максимальная активность катализатора соответствует содержанию окиси хрома 8—12%. [c.193]

    Контактная масса КС для окисления сернистого ангидрида в кипящем слое [21—22, 85, 130—135]. При использовании кипящего слоя катализатор должен быть особенно прочным, так как в противном случае в условиях интенсивного перемешивания он быстро истирается и уносится из зоны реакции [2]. Так, потери промышлен- ного ванадиевого катализатора БАВ при работе в режиме кипящего слоя составляют за месяц не менее 8—10% от первоначальной загрузки. Износоустойчивость ванадиевых контактов значительно повышается. при использовании сферического алюмосиликатного носителя [2, 130—131]. В промышленнбсти для этой цели используют фракционные отходы алюмосиликатного катализатора крекинга нефти (фракция от 1 до 2 мм). [c.141]

    Применение цеолитных носителей позволяет упростить процесс и проводить гидрокрекинг при температуре на 40—50 °С ниже, чем при обычной алюмосиликатной основе (425 °С против 465— 475 °С). Давление в процессе от 3 до 15 МПа. [c.185]

    Носителем активности подобных катализаторов является гидратированный алюмосиликат НАЮг бЮг, сохраняющий активность до 700°С. Все реакции, протекающие на поверхности алюмосиликатного катализатора, имеют цепной характер. Последовательность реакций крекинга углеводородов различных классов определяется скоростью адсорбции их на зернах катализатора, так как при температуре крекинга процесс идет в диффузионной области и лимитируется скоростью диффузии молекул сырья к поверхности катализатора. При этом ароматические углеводороды деалкилируются с образованием алкенов и простейших ароматических углеводородов, нафтены дегидрируются, деалкилируются и расщепляются с разрывом цикла. Алкены, образовавшиеся при крекинге, деструктируются, изомеризуются и гидрируются с образованием циклических и ароматических углеводородов. [c.135]

    Fiberfrax алюмосиликатные керамические нити, которые можно использовать в качестве носителя катализатора при температурах до 1250°С, обеспечивающего небольшой перепад давления, или в качестве высокотемпературного фильтра для улавливания ценных пылеобразных частиц катализатора, например Pt, в сбросовых газах заводов окисления аммиака. [c.370]


Смотреть страницы где упоминается термин Носители алюмосиликатные: [c.53]    [c.182]    [c.175]    [c.52]    [c.57]    [c.82]    [c.55]    [c.206]    [c.251]    [c.39]   
Иммобилизованные ферменты (1987) -- [ c.43 ]




ПОИСК





Смотрите так же термины и статьи:

Носители алюмосиликатные веществ

Носители алюмосиликатные металлов и их оксидо

Носители алюмосиликатные монослоев липидов

Носители алюмосиликатные поверхностно активных

Носители алюмосиликатные поливинилового спирт

Носители алюмосиликатные пористой керамики

Носители алюмосиликатные угля и графитированной



© 2025 chem21.info Реклама на сайте