Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Триптофан обнаружение

    Триптофан служит предшественником множества алкалоидов и других метаболитов. Некоторые из них приведены на рис. 14-27. Алкалоид Гармин, обнаруженный в растениях некоторых семейств, может образовываться из триптофана и ацетальдегида (или пирувата) тем же путем, какой показан на рнс. 14-25 для образования папаверина. [c.157]

    Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтетические. Среди природных аминокислот (около 150) выделяют протеиногенные (20 аминокислот), которые входят в состав белков. Все протеиногенные аминокислоты представляют собой -формы. Из них восемь являются незаменимыми, они синтезируются только растениями и не синтезируются в организме человека, поэтому их получают с пищей. К ним относятся валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин, триптофан, иногда в их число включают гистидин и аргинин, которые не синтезируются в организме ребенка. [c.10]


    Для обнаружения ароматических и гетероциклических а-ал нокислот используется ксантопротеиновая реакция (реакция фенилаланин, тирозин, гистидин, триптофан). Например, п действии концентрированной азотной кислотой на тирозин ( разуется нитросоединение, окрашенное в желтый цвет. При j бавлении к нему щелочи окраска становится оранжевой в Bf ионизацией фенольной гидроксильной группы и увеличени вклада аниона в сопряжение. [c.336]

    При изучении эффекта Керра [119], а также при исследовании спектров флуоресценции 7-глобулина [1201 показано, что 90% ароматических остатков спрятаны внутри глобулы и находятся в гидрофобном окружении. При подробном изучении дифференциальных УФ-спектров 7-глобулина Окуловым и Троицким [1211 обнаружено, что примерно 17 остатков тирозина (из 56) и 3 остатка триптофана (из 22) расположены на поверхности нативной глобулы 7—8 тирозинов расположены в щелях глобулы и больше половины тирозинов (31—32) и подавляющая часть триптофанов находятся внутри глобулы. Авторами было замечено, что при pH 3 молекула 7-глобулина может набухать , что приводит к повышению доступности хромофоров без разрушения упорядоченных структур молекулы. Это, вероятно, связано с частичным разрушением глобулярной (третичной) структуры без нарушения вторичной. Если при этом частично или полностью разрушаются гидрофобные области, то естественно, что связывание углеводорода должно уменьшаться. Вероятно, такое поведение (существование частично развернутой формы белка) при изменении pH присуще всем глобулярным белкам. Однако для обнаружения этих форм недостаточно изучения только вязкости и оптической активности. Очень важную информацию может дать исследование связывания углеводородов. Дальнейшее увеличение заряда с изменением pH среды приводит белковую молекулу к состоянию, соответствующему полной дезорганизации глобулы, разрушению ее третичной и вторичной структуры, т. е, к состоянию клубка. [c.26]

    Наиболее общим методом определения концентрации пептидов является колориметрия продуктов реакции с нингидрином [2]. Это один из наиболее чувствительных колориметрических методов. Для обнаружения аминокислот и пептидов разработаны как обычный, так и полностью автоматизированный варианты, причем нингидриновый реагент не вызывает коррозии и его можно подавать обычным микронасосом. Реакция идет по свободным аминогруппам, но в некоторых случаях хромофор образуется с низким выходом. Данные по окрашиванию дипептидов можно найти в работе [3]. У всех дипептидов, содержащих в качестве Ы-концевой аминокислоты аргинин, треонин, серин, глутаминовую кислоту, глицин, фенилаланин, метионин, лейцин и тирозин, интенсивность окраски составляет 1,6-10 у лейцина эта величина составляет 1,7-10 . У дипептидов с М-концевым лизином и аспарагиновой кислотой интенсивность окраски несколько выше (на 20 и 29% соответственно), а дипептиды с Ы-концевым гистидином и триптофаном проявляются несколько слабее (42 и 67% соответственно от средней интенсивности). Дипептиды с М-концевым пролином, валином и изолейцином окрашиваются очень слабо [2,7 6,4 и 8,5% от средней (1,6- 10 ) интенсивности]. [c.391]


    Протеины гидролизуются сильными минеральными кислотами с образованием более простых продуктов распада, например полипептидов, аминокислот и пр. Триптофан, являющийся компонентом почти всех протеинов, разлагается и дает индол и его про-изводные. Эти амино- и иминосоединения можно обнаружить сплавлением с дихлорфлуоресцеином (стр. 348) или конденсацией с п-диметиламинобензальдегидом. В последнем случае аминогруппы могут образовать окрашенные основания Шиффа. Конденсация индольных оснований, образовавшихся в результате разложения протеинов кислотой, по-видимому, играет главную роль в предлагаемой реакции с п-диметиламинобензальдегидом (см. обнаружение пиррола, стр. 366). [c.553]

    Регулируемые терминаторы бактерий называют аттенюаторами (ослабителями). Впервые обнаружен и лучше других изучен аттенюатор триптофанового оперона Е. соИ. Этот оперон состоит из пяти генов, кодирующих ферменты биосинтеза триптофана. Регуляцию осуществляют две системы, чувствующие потребность клетки в триптофане. Первая система влияет на эффективность инициации на промоторе оперона. Репрессор триптофанового оперона в комплексе с триптофаном присоединяется к оператору, расположенному перед стартовой точкой транскрипции в районе —10 , и стерически препятствует РНК-полимеразе присоединяться к промотору. Таким образом, при избытке триптофана оперон репрессирован. В отсутствие триптофана репрессор теряет способность связываться с оператором, в результате чего оперон индуцируется. Эту систему дополняет регуляция в аттенюаторе, расгГоложенном на расстоянии 180 п. н. от стартовой точки транскрипции внутри <оидерной последовательности, предшествующей инициирующе.му кодону первого структурного гена. В условиях избытка триптофана лишь одна из десяти молекул РНК-полимеразы, начавших синтез РНК на триптофановом промоторе, преодолевает этот терминатор и переходит в область структурных генов. При уменьшении количества триптофана доля молекул РНК-полимеразы, преодолевающих аттенюатор, возрастает. [c.158]

    Простые алкалоиды по своему строению близки триптофану. Представителями этой подгруппы являются широко распространенный в природе серотонин, буфотенин (XVII), который обнаружен в грибах и семенах некоторых тропических кустарников, а также грамин (XVIII), образующийся в проросшем ячмене. [c.321]

    Диамантштейн и Эрхарт [5] использовали этот метод для обнаружения в моче продуктов обмена триптофана, например у больных хронической миелозой, которым давали триптофан. Они наносили 50—80 мм пробы мочи и проводили хроматографический анализ, используя в большинстве случаев восходящий метод и кислый растворитель (Зр, см. стр. 298). Предварительное концентрирование мочи не требуется. Природные неорганические и органические компоненты мочи не оказывают влияния на величины Rf. [c.303]

    Для обнаружения индола по способу Ковача чистую культуру выращивают в пробирках на жидкой среде, богатой триптофаном, и добавляют несколько капель реактива Ковача (изоамиловый спирт — 150 мл, -диметиламинобензальдегид — 10 мл, кон-цент эированная соляная кислота — 50 мл). Индол, образовавшийся в ходе расщепления микробами триптофана, при взаимодействии с бензальдегидом образует окрашенные в красный цвет соединения — розиндолы , поэтому при положительной реакции добавленная жидкость в течение нескольких минут становится малиново-красной. [c.34]

    Для примера приведем серотонин (1) (также называемый 5-гидрокситриптамин, или 5-НТ). Это соединение широко распространено в природе, но встречается в очень низких концентрациях. В живых системах он образуется из аминокислоты триптофан гид-роксилированием по положению 5 индольного ядра с последующим декарбоксилированием. Впервые серотонин был выделен из природных продуктов в 1948 г. как сосудосуживающее средство, присутствующее в сыворотке крови, а впоследствии был обнаружен в пищеварительной системе и в мозгу. Однако только лабораторный синтез несколько лет спустя значительно расширил возможности для изучения механизма его действия. Сейчас известно, что серотонин имеет широкую и сложную область фармакологического действия, включая сужение кровеносных сосудов благодаря стимуляции гладкой мускулатуры и агрегации тромбоцитов. Он вызывает. [c.11]

    ФОЛИ НА РЕАКТИВ, водный р-р H7[P(W,07)e] и Hj[P(MoiOi)6]. Примен. для обнаружения и фотометрич. определения фенолов, белков, содержащих тирозин или триптофан, пуриновых оснований (гуанина, ксантина, [c.625]

    Окситриптамин (серотонин) входит в состав тромбоцитов и некоторых других клеток. В наибольшем количестве он был обнаружен в мозгу и слизистой желудочно-кишечного тракта. Его роль в обмене веществ изучена еще недостаточно. Особенно много серотонина обнаружено в клетках некоторых форм злокачественных новообразований. У больных с такими опухолями в моче, особенно после нагрузки триптофаном, обычно содержится большое количество 5-оксииндолуксусной кислоты — продукта разрушения серотонина. [c.219]

    Несслера аммиак, образующийся при реакции оксиаминокислот с перйодатом (стр. 21), дает с реактивом Несслера желтую окраску. Аргинин выявляется на хроматограмме в виде красных пятен, если обработать ее щелочным раствором 1-нафтола и затем опрыскать раствором гипохлорита (реакция Сакагути). Нитропруссидную реакцию можно с успехом использовать для обнаружения цистеина и цистина эти аминокислоты (после обработки цианидом) при опрыскивании хроматограммы раствором нитропруссида образуют красные пятна. Цистеин, метионин и некоторые другие восстанавливающие вещества могут быть идентифицированы в виде белых пятен на розовом фоне при обработке хроматограммы реактивом с йодистой платиной. Триптофан дает с реактивом Эрлиха пурпурную окраску, если хроматограмму прогреть при 100° в течение нескольких минут. Эти и другие методы обнаружения аминокислот на хроматограммах подробно описаны в книге Блока и др. [157]. [c.44]


    Продукт присоединения X устойчив к нагреванию (100° С, 15 мин) и к действию кислот (6 н. соляная кислота), но расщепляется при обработке 0,1 н. раствором NaOH. 5-Цистеин включается при облучении в поли-U и РНК, в меньшей степени — в поли-С, поли-dT и ДНК. Включение резко уменьшается в случае двухспиральных полинуклеотидов. Урацил при облучении (253,7 ммк) способен также связываться с глицином, серином, фенилаланином, тирозином, триптофаном, цистином, метионином, гистидином, аргинином и лизином. Наибольший процент связывания обнаружен для цистеина, тирозина и фенилаланина Характер связи (за исключением цис. -еина) не установлен. [c.637]

    Источником его образования является аминокислота триптофан. Небольшие количества серотонина постоянно присутствуют в крови, где он может быть обнаружен флюоро-скопически. [c.211]

    При расщеплении пептида НгК-триптофан-метионин-аспара-гинат-фенилаланин-СОКНг после первого цикла было идентифицировано бмс-триметилсилилпроизводное метилтиогидантоина триптофана, после второго цикла — производные фенилаланина и метионина. Аспарагинат не был обнаружен. Авторы предполагают, что последний, вероятно, циклизуется с С-концевым амидом фенилаланина. [c.34]

    ЦИММЕРМАНА РЕАКЦИЯ — цветная реакция о-фталевого альдегида с аминокислотами, проводимая в щелочной среде с последующим подкнсленпем. Реакцию дают глицин, аланин, аспарагин, аргинин, цистин, триптофан и аммонийные соли. Окрашивание варьирует от красного до фиолетового окрашенные продукты, образующиеся из глицина и триптофана и с солями аммонпя, извлекаются хлороформом, продукты реакции др. аминокислот в хлороформ не переходят. Реакция используется для количественного определения глищша, гл. обр. после выделения его из смеси аминокислот бумажной илп колоночной хроматографией, а также для выявления пятен гл1щина на бумажных хроматограммах и обнаружения солей аммония. Предложена В. Циммерманом в 1930. [c.430]

    Обнаружение триптофана и его пептидов. 1 г и-диметилами-нобензальдегида растворяют в 85 мл ацетона и к раствору добавляют 15 мл концентрированной соляной кислоты. Реагент необходимо каждый раз готовить заново. Хроматограмму погружают в этот реагент через 2—3 мин появляются фиолетовые пятна триптофана и содержащих его пептидов. Триптофан можно также выявить с помощью других реагентов для обнаружения индолов. [c.126]

    Все описанные специфические реакции можно проводить после обнаружения нингидрином. Однако до проведения специфического обнаружения следует снять фиолетовую окраску, вызванную нингидрином. С этой целью хроматограмму погружают в раствор концентрированной соляной кислоты в ацетоне (1 10), после чего сушат. Перед обнаружением триптофана такое обесцвечивание не обязательно, поскольку реагент на триптофан растворен в смеси кислоты с ацетоном и обесцвечивает нингидриновые пятна. Чувствительность обнаружения реагентом Паули и диметиламинобензальдегидом на хроматограммах, обработанных и не обработанных нингидрином, одинакова, а чувствительность обнаружения реагентом Сакагучи после обесцвечивания нингидриновых пятен снижается. [c.126]

    Около половины небелкового азота представлено аспарагином. В последнее время обнаружен такЖ е глютамин. Азот этих двух соединений составляет около 40% всего азота. Количество азотистых оснований находится в пределах 25% общего азота. В свободном состоянии, кроме аспарагина и глютамина, в клубнях в небольших количествах содержатся следующие аминокислоты и азотистые основания аргинин, лизин, лейцин, триптофан, гистидин, холин, ацетилхолин, тригонелин, аллантоин, ксантин, гипоксантин, гуанин, аденин, кадаверин, глютатион. [c.15]

    Цветные пробы, используемые для обнаружения индивидуальных аминокислот, таких, как оксипролин, триптофан, фенилаланин, метионин, цистин, глицин и аланин, приведены Зальцбергом и Фергусом [203] см. т. 1, стр. 296—301. [c.226]

    Другое важное наблюдение было сделано при структурном анализе-А-белка триптофан-синтазы у обратных мутантов Тгр+, полученных из Тгр -мутанта trpA23. У части таких обратных мутантов Тгр в 210-м. положении вместо вредного аргинина мутанта irpA23 был обнаружен нормальный глицин. Это хорошо согласуется с рассмотренной в гл. XIII возможностью того, что в результате обратной мутации восстанавливается исходная последовательность нуклеотидов в мутантном гене, а следовательно, и нормальная аминокислотная последовательность в соответствующем белке. Однако у некоторых других обратных мутантов в А-белке в 210-м положении оказался не нормальный глицин, а серин. Это наблюдение является прямым доказательством существования невидимых, мутаций , в случае которых, как это было предположено в гл. VI, мутационная замена одного аминокислотного остатка на другой остается незамеченной. Действительно, как видно из приведенного примера, некоторые замены аминокислот в первичной структуре полипептида (такие,, как замена глицина на аргинин в 210-м положении) приводят к полной потере каталитической функции А-белка триптофан-синтазы, тогда как другие замены в том же положении (такие, как замена глицина на серин) не мешают каталитической функции возникшего мутантного фермента [c.366]

    Таблица генетического кода в ее окончательной форме позволяет проводить теоретический анализ данных об аминокислотных замещениях в мутантных белках. Эти данные могут быть использованы для проверки важнейшего постулата о том, что мутации, приводящие к замене одной аминокислоты, возникают, как правило, в результате замещений одиночных оснований в генетических полинуклеотидах. Например, с этой точки зрения можно рассмотреть результаты Яновского, полученные при доказательстве коллинеарности гена А триптофан-синтазы Е. oli и А-белка этого фермента. Если сравнить данные, представленные на фиг. 181 и в табл. 27, становится очевидным, что каждую обнаруженную замену аминокислоты можно объяснить простым замещением одного азотистого основания на другое. Например, у мутанта trpA23, нормальный глицин (кодон ГГ точка означает, что глицин может кодироваться триплетом с любым из четырех нуклеотидов в третьем положении), стоящий на 210-м месте в белке дикого типа, замещен аргинином (кодон АГг). Очевидно, что эта мутация была вызвана замещением нормального гуанина в первом положении кодона на аденин. [c.442]

    Другой пример полярных мутаций был обнаружен при исследовании ферментов биосинтеза триптофана у Е. соИ некоторые мутации замены оснований в гене trpE не только приводили к исчезновению белка антрани-лат-синтетазы, кодируемого этим геном, но также резко снижали количество синтезирующейся триптофан-синтазы, определяемой тесно сцепленными генами trpA и trp Q, не содержащими никаких мутаций. В настоящее время ясно, что такие полярные мутации в действительности представляют собой бессмысленные мутации в гене, который в ходе транскрип- [c.452]

    Триптофан — а -амино- -индолилпропионовая кислота. Впервые обнаружен в 1901 г. в гидролизате казеина, полученном при действии на последний соком поджелудочной железы. Выше (стр. 17) указывалось, что триптофан разрушается при кислотном гидролизе белков  [c.26]

    Имеющиеся данные позволяют представить путь превращения триптофана в организме с образованием в виде промежуточных продуктов 5-окси-индолиловых соединений. Первым этапом этого пути является окисление триптофана в индоловом кольце с выделением 5-окситриптофаиа. Последний подвергается декарбоксилированию с образованием 5-окситриптамина. В печени и в других тканях обнаружен фермент, катализирующий отщепление СО. от карбоксильной группы 5-окситриптофана. Этот фермент специфически действует на 5-окситриптофан, но не оказывает влияния на триптофан. Таким образом, триптофан в тканях организма сначала подвергается окислению (с образованием 5-окситриптофана), а затем превращается в 5-окситриптамин. [c.393]

    Было изучено нитрование кератина шерсти кролика 1—5 М азотной кислотой при 20—40° [112, ИЗ]. В этих условиях тирозин подвергался монозамещению, триптофан полностью разрушался, а цистин совершенно не изменялся. Продукты реакции в этом случае анализировали на содержание цистина, тирозина, триптофана и 3-нитротирозина. Кислотный гидролизат нитрованного белка, как показал хроматографический анализ, не содержал триптофана, тирозина и 3,5-динитротирозина, но в нем был обнаружен 3-нитротирозин в количестве, эквивалентном содержанию тирозина в исходном кератине. [c.354]

    Картированные гены ауксотрофности по триптофану образуют опе-рон (см. гл. 15), в котором последовательность расположения генов соответствует последовательным биохимическим реакциям, приводящим к синтезу триптофана. Мы уже видели, что мутации, влияющие на утилизацию лактозы, расположены в хромосоме очень близко друг от друга (рис. 8.16). Такое кучное расположение генов, определяющих родственные генетические функции-это один из наиболее важных фактов, обнаруженных при изучении генетической организации бактерий. Вспомним, что кучное расположение генов, определяющих родственные функции, наблюдалось у бактериофагов X. и Т4 (гл. 7). Такая генетическая организация не случайна она, по-видимому, отражает фундаментальные основы регуляции генетических функций у прокариотических организмов. [c.254]


Смотреть страницы где упоминается термин Триптофан обнаружение: [c.158]    [c.625]    [c.205]    [c.28]    [c.323]    [c.291]    [c.390]    [c.391]    [c.61]    [c.408]    [c.139]    [c.45]    [c.82]    [c.342]    [c.37]    [c.391]    [c.211]    [c.91]    [c.256]    [c.342]    [c.360]   
Практическая химия белка (1989) -- [ c.270 , c.300 , c.348 , c.349 ]




ПОИСК





Смотрите так же термины и статьи:

Триптофан



© 2025 chem21.info Реклама на сайте