Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кооперативность конформационных лигандов

    B. Способность областей контакта между протомерами передавать конформационные сдвиги, вызванные связыванием лиганда, от одной полипептидной цепи к другой (кооперативные конформационные изменения). [c.341]

    Предполагается, что протомер как целое может находиться в двух или нескольких конформационных состояниях, сохраняя при этом свою симметрию. Сродство стереоспецифических центров к лиганду изменяется при изменении состояния олигомера. Такая система кооперативна. [c.458]


    НО также и потому, что в гемопротеинах имеется необычайно тонкое равновесие между состояниями с максимальной и минимальной спиновой мультиплетностью. Можно предположить, что изменение спинового состояния железа определяется стереохимическими факторами. Изменение спинового состояния при переносе электрона между уровнями eg и t2g сопровождается изменением ионного радиуса катиона железа и изменением длин связей металл — лиганд. Как показано на примере простых неорганических комплексов [58], ионный радиус Fe(II) или Ре(И1) увеличивается примерно на 20% при переходе от низкоспинового состояния к высокоспиновому (табл. 3). Стереохимическое значение данного спинового состояния железопорфиринового комплекса, следовательно, заключается в том, что расположение катиона железа относительно плоскости координируемых атомов азота пиррольных колец порфирина зависит от длин связей железо — порфирин, изменяющихся по мере того, как меняется ионный радиус металла и взаимодействие металл-лиганд. Кроме того, поскольку связывание кислорода сопровождается изменением спинового состояния [105] и положение атома железа относительно плоскости порфирина должно коррелировать во времени и пространстве со связыванием молекулы кислорода, предполагается [103, 104], что изменение стереохимии железо-порфирина вызывает конформационные изменения, ответственные за кооперативное связывание кислорода. В этом и заключается биологическая роль электронной конфигурации атома железа в физиологической функции гемоглобина. [c.40]

    Кооперативный эффект связывания кислорода гемоглобином имеет структурную природу и может быть объяснен на основе данных конфор-мационного анализа. В геме гемоглобина за счет стерического отталкивания, возникающего между проксимальным остатком гистидина и атомами азота пиррольных колец порфиринового цикла, аксиальный лиганд вытягивает ион Ре " из плоскости порфиринового макроцикла на 0,75 А. При взаимодействии с кислородом ион Ре " возвращается в плоскость порфирина (рис. 5.10). При этом высокоспиновое пирамидальное состояние координационного узла гема переходит в октаэдрическое искаженное состояние. Дистальный остаток гистидина не взаимодействует с молекулой О2, но обеспечивает оптимальные условия для ее эффективного связывания. Одновременно с ионом железа происходит перемещение остатка проксимального гистидина, что, в свою очередь, вызывает конформационные изменения белка данной субъединицы и полипептидных цепей остальных субъединиц гемоглобина. В результате этого после присоединения первой молекулы О2 к субъединице гемоглобина активные центры — гемы выходят из глобул наружу, благодаря чему [c.213]


    Значительный запас конформационной энергии спиральной пептидной цепи рецептора в липидной мембране объясняет молекулярный механизм усиления сигнала после взаимодействия рецептора с лигандом. Поскольку при этой конформации все торсионные углы цепи жестко связаны друг с другом, даже небольшое изменение поворота или гидратации одного аминокислотного остатка из-за взаимодействия с лигандом приводит к согласованному, т. е. кооперативному, изменению конформации всей цепи. Поэтому воспринятый клеткой (или соседними рецепторами) сигнал будет многократно усилен за счет кооперативного увеличения свободной энергии пептидной цепи рецептора. [c.125]

    Предложено довольно большое количество теоретических моделей для кинетического описания явления отрицательной кооперативности. Однако нас интересуют в первую очередь модели, в которых предпринята попытка представить процессы, происходящие на уровне взаимодействия субъединиц. В качестве примера подобного подхода рассмотрим представления, развиваемые в работе [126]. Предполагается, что олигомерный фермент имеет, в отличие от [121], не два состояния всей структуры, а два состояния активных центров — открытое и закрытое. В этом случае только открытая конформация активного центра может обмениваться молекулами субстрата со средой, а каталитический акт происходит в закрытой конформации. Явление отрицательной кооперативности оказывается связанным с доступностью поступления субстратов в открытый и закрытый активные центры, которые, согласно автору, поочередно меняют свое состояние. Предполагается, что присоединяющиеся лиганды вызывают сопряженные конформационные флуктуации фермента, причем их частота должна быть оптимальной для совершения катализа. Однако в этой модели практически ничего не говорится ни о сути процесса катализа, происходящего в закрытом активном центре, ни о физических механизмах, обеспечивающих синхронность сопряженных конформационных флуктуаций с катализом и сменой продукта на новую молекулу субстрата. [c.106]

    Взаимодействие одного протомера со специфическим лигандом вызывает конформационные изменения всего олигомерного белка и изменяет сродство других протомеров к лигандам. Это явление носит название кооперативных изменений конформации протомеров. [c.18]

    Также отметим, что вероятностное описание процесса взаимодействия лигандов с рецепторами позволяет понять возможные механизмы отклонения кинетики лиганд-рецепторного взаимодействия от уравнений (3.1) или (3.56), даже если оно протекает по схеме один лиганд-один рецептор . Эти отклонения будут наблюдаться в тех случаях, когда хотя бы одно из предположений вероятностной модели взаимодействия лигандов с рецепторами не выполняется. При этом наиболее возможным является предположение о нарущении статистической независимости лиганд-рецепторного взаимодействия. Статистическая независимость может нарушаться при взаимодействии соизмеримых концентраций лиганда и рецептора, при наличии нескольких типов мест связывания лиганда и (или) при кооперативном связывании, при наличии конформационных изменений рецепторов и (или) лиганда, при наличии процесса диффузии лиганда и т.д. [c.489]

    Отрицательную кооперативность нельзя объяснить, исходя из модели Моно и др., согласно которой присоединение первой молекулы лиганда только стабилизирует состояние с высоким сродством и не способно увеличить концентрацию Т-формы. Теория Кошланда и др. объясняет отрицательную кооперативность тем, что присоединение лиганда к одному центру вызывает конформационное изменение, которое передается на вакантную субъединицу (допущение в). Таким образом, отрицательная кооперативность является отличительным признаком механизма Кошланда и др. [c.261]

    Что же определяет возможность взаимодействия производного антибиотика с бактериальным лигандом и последующее ингибирование мембранных трансглнко-зилирующих ферментов В последние годы высказывается предположение, что при взаимодействии крупных молекул с рецептором, отвечающим структурным и термодинамическим требованиям, определяющее значение имеет кооперативное связывание лиганда с рецептором. Кооперативность - общий биохимический феномен, когда несколько процессов, независимых в других случаях, оказываются термодинамически взаимозависимыми. В ряду гликопептидов отмечены биологические эффекты, которые нельзя свести к конформационным изменениям. При невозможности конформационных изменений динамические связь с лигандом и другие процессы оказываются структурно взаимозависимыми и кооперативными. Кооперативные взаимодействия с лигандами ослабевают с уменьшением размера молекулы и этим можно объяснить частичное снижение антибактериальной активности частично разрушенных антибиотиков по сравнению с производными неразрушенных гликопептидов. [c.83]

    Хотя приведенные выше экспериментальные факто и можно объяснить с помощью модели МУШ, желательна более прямая проверка некоторых предсказаний модели. Очевидно, одним из наиболее важных является допущение о том, что аллостерические эффекты являются следствием конформационных изменений. Если это так. то конформационные изменения и кривая степени насыщения при кооперативном связывании лиганда не должны совпадать конформационные изменения (R) должны опережать изменение степени насыщения. Шахман (S ha hman) и сотр. поставили специальные опыты для того, чтобы исследовать этот вопрос. [c.99]


    Каким образом присоединение О2 к гемовому железу вызывает конформационное изменение гемоглобина Как указано в гл. 10 (разд. Б.4), при связывании с кислородом атом железа в геме, по-видимому, смещается в плоскости гемогруппы приблизительно на 0,06 нм [73]. Это смещение передается через гистидин F-8, и спираль F смещается в сторону гема в результате происходит изменение третичной структуры, приводящее к ослаблению водородных связей в области а1р2-контактов и солевых мостиков между субъединицами. Несмотря на тщательные рентгеноструктурные исследования, детали механизма, инициирующего конформационные изменения при присоединении О2, остаются неясными. Необходимо иметь в виду, что разрешение, которое удается получить при рентгеноструктурном исследовании кристаллов белков, позволяет установить локализацию легких атомов с достаточной точностью, в результате чего механизм передачи кооперативных эффектов не поддается непосредственному изучению и его приходится выяснять, исходя из изменений третичной структуры субъединиц при атшеплении лиганда от Р(т. е. окси-)- или при присоединении его [c.307]

    Многие представления о действии и взаимодействии белков появились в ходе исследования гемоглобина. Многие представления и модели, относящиеся к взаимодействиям белок — лиганд и белок — белок, были развиты в процессе исследований гемоглобина к ним относятся сигмоидное связывание [674—676], коэффициент Хилла [677], константы последовательного связывания лигандов в олигомерных белках [678], кооперативность, основанная на конформационных изменениях [679, 680], и аллостерический контроль белков [92, 681, 682]. Следует отметить, что многие из этих концепций были введены и математически формализованы до того, как стала известна структура какого-либо белка. Очевидно поэтому актуальное значение и полезность этих конце1щий должны подвергаться постоянной проверке. Пример дифосфоглицерата, влияние которого на действие и структуру гемоглобина игнорировалось десятилетиями, свидетельствует о потенциальной опасности жестких формулировок в биологии. [c.259]

    Предполагается, что олигомер как целое может находиться в двух или нескольких конформационных состояниях. Сродство к лиганду меняется при измененпи состояния олигомера. Такая система кооперативна. Без ограничения общности рассмотрим димер, который может находиться в двух состояниях, обозначаемых Д и Г. В каждом из этих состояний димер способен присоединить О, 1 или 2 молекулы лиганда S. Следовательно, число различных состояний димера равно шести / оо, Ria = Rau оо, Тщ = Tfsu i ll- Условия равновесия имеют вид [c.201]

    Второй важный случай кооперативных взаимодействий проявляется в системах, построенных из нескольких субъединиц, содержащих однотипные центры связывания лиганда Ь. В качестве детально изученного примера можно привести уже неоднократно упоминавшийся гемоглобин, содержащий четыре остатка гема, по одному на каждой из двух а- и двух /3-субъединиц, и тем самым способный связывать до четырех молекул Ог- Важной особенностью этой структуры является тот факт, что присоединение О2 к одной из субъединиц вызывает конформационное изменение не только в ней самой, но и в контактирующих с ней субъединицах, причем в результате этих изменений повышается их сродство к кислороду. Это существенно изменяет вид зависимости степени насыщения кислородом от его парциального давления по сравнению с гиперболической зависимостью, описываемой уравнением (3.12). Важно, что при этом зависимость становится значительно более благоприят1Юй для выполнеш я гемоглобином его основной биологической функции — переноса кислорода от легких к тканям живого организма. [c.121]

    В настоящее время не вызывает сомнения, что решающая роль в механизме кооперативной регуляции активности принадлежит конформационной подвижности белков. Поскольку иммобилизация иногда существенно ограничивает ее, то кооперативные и аллостерические свойства олигомерных ферментов в иммобилизованном состояния часто отличаются от свойств этих ферментов в гомогенном растворе. При этом иногда уменьшается или даже совсем исчезает 8-образный характер зависимости скорости реакции от концентрации субстрата или аллостери-ческого лиганда. Эти зависимости могут трансформироваться в сигмоидальные, которые характерны для ферментов, действующих в соответствии с кинетическим уравнением Михаэлиса — Ментен. [c.117]

    К, немного сдвигает суммарное равновесие, описываемое уравнением (17.4), влево, поскольку часть молекул переходит из состояния Тр в состояние Кр для того, чтобы вновь установилось равновесие Тр. При этом, однако, происходит непропорционально большое увеличение числа мест, доступных для лиганда Р связьшание одной молекулы Р с одним местом связьшания как бы подталкивает все п протомеры (с числом п мест связывания) к переходу в состояние К, что следует из постулированного механизма согласованных конформационных изменений. Таким способом достигается кооперативность процесса, так как число мест, доступных для Р, возрастает во много раз быстрее, чем число молекул, претерпевших переход в состояние К. Конечно, по мере увеличения количества связанных молекул Р практически все молекулы белка оказываются в состоянии К еще до их полного насыщения лигандом. На этой стадии процесс связывания уже не столь чувствителен к концентрации Р, как прежде. [c.97]

    Предполагают, что для прочного связывания lq необходима определенная конформационная перестройка IgG. Это предположение базируется на том, что IgG в форме комплекса с антигеном, а также IgG, агрегированный иными способами (прогреванием при 63°С, сшивкой бифункциональными реагентами), прочно связывает lq. IgM прочно связывает lq также после его агрегации. Но это условие не является обязательным. Как убедительно показали Х.-Ч. Чианг и М. Кошланд (Н.— h. hiang, М. Koshland, 1979), даже комплекс IgM-антител с одновалентным гаптеном имеет высокое сродство к lq. Хотя агрегации IgM не происходит, наблюдаются вызванные гаптеном изменения конформации иммуноглобулина, в том числе F -участка молекулы. Все эти данные позволяют предполагать лишь, что связывание lq — кооперативный процесс, и прочная фиксация достигается скорее всего в случае соединения lq с иммуноглобулинами по нескольким точкам. Так как в молекуле IgG два центра для связывания lq, но стерически доступен, по-видимому, только один, для связывания lq по нескольким точкам необходимо сближение в пространстве нескольких эффекторных центров. Это достигается при агрегации IgG или его фиксации на нерастворимом носителе. В молекуле IgM пять доступных для lq центров. Поэтому кооперативный эффект при взаимодействии может быть достигнут даже при формировании эквимолекулярного комплекса, но при условии, что все центры для связывания lq в молекуле IgM будут располагаться в пространстве наиболее благоприятным образом для фиксации лиганда. Этому, очевидно, способствует гаптен, связывающийся с IgM-антителами. [c.136]


Смотреть страницы где упоминается термин Кооперативность конформационных лигандов: [c.198]    [c.252]    [c.125]    [c.125]    [c.104]    [c.186]    [c.106]   
Биофизическая химия Т.3 (1985) -- [ c.364 , c.369 ]




ПОИСК





Смотрите так же термины и статьи:

Конформационные

Кооперативное



© 2024 chem21.info Реклама на сайте