Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфорилирование также

    Исходный субстрат в биосинтезе АМФ-инозиновая к-та. АМФ, образующаяся также при пирофосфатном расщеплении АТФ, фосфорилируется в организме до АДФ при участии аденилаткиназы. Фосфорилирование АДФ, приводящее к синтезу АТФ в живых организмах, происходит при сопряжении этой р-ции с окислит.-восстановит. р-циями. Различают три типа сопряжения в гликолизе (локализован в водной фазе клетки, в цитоплазме), при окислит, фосфо-рилировании и фотофосфорилировании в т. наз. сопрягающих мембранах субклеточных частиц (митохондрий и хлоропластов) и бактерий. [c.34]


    Технологический процесс производства ионообменных смол на основе сополимеров стирола с дивинилбензолом состоит из последовательности физико-химических, а также физико-механических стадий процесса сополимеризации, процесса сушки.сополимера, процесса предварительного набухания сополимеров, химического превращения сополимеров (реакции сульфирования, фосфорилирования и т. п.), отмывки конечного продукта. [c.295]

    Ткани, имеющие большой динамический диапазон энергетического обмена (скелетная и сердечная мыщцы), а также мозг содержат креатинкиназу (с. 291). Во внутренней мембране митохондрий скелетных мышц, сердца и мозга содержится креатинкиназа, отличная по электрофоретической подвижности и термолабильности от трех изоферментов креатинкиназы цитоплазмы. Активность креатинкиназы в митохондриях достаточна для того, чтобы в присутствии избытка креатина обеспечить превращение всего образующегося в процессе окислительного фосфорилирования АТФ в креатинфосфат. Освобождающийся при этом АДФ вновь фосфорилируется в митохондриях. Таким образом, высокая активность креатинкиназы в митохондриях может поддерживать работу дыхательной цепи на постоянно высоком уровне в тканях, лишь периодически испытывающих потребность в большом количестве АТФ. [c.479]

    Железо функционирует как основной переносчик электронов в биологических реакциях окисления — восстановления [231]. Ионы железа, и Fe +, и Fe +, присутствуют в человеческом организме и, действуя как переносчики электронов, постоянно переходят из одного состояния окисления в другое. Это можно проиллюстрировать на примере цитохромов . Ионы железа также служат для транспорта и хранения молекулярного кислорода — функция, необходимая для жизнедеятельности всех позвоночных животных. В этой системе работает только Ре(П) [Fe(111)-гемоглобин не участвует в переносе кислорода]. Чтобы удовлетворить потребности метаболических процессов в кислороде, большинство животных имеет жидкость, циркулирующую по телу эта жидкость и переносит кислород, поглощая его из внешнего источника, в митохондрии тканей. Здесь он необходим для дыхательной цепи, чтобы обеспечивать окислительное фосфорилирование и производство АТР. Одиако растворимость кислорода в воде слишком низка для поддержания дыхания у живых существ. Поэтому в состав крови обычно входят белки, которые обратимо связывают кислород. Эти белковые молекулы способствуют проникновению кислорода в мышцы (ткани), а также могут служить хранилищем кислорода. [c.359]


    Фосфорилирование фермента не отражается на ферментативной активности при pH 8,0. Однако фосфорилирование белка оказывает влияние на аллостерические свойства фермента повышается чувствительность к ингибированию АТФ и цитратом, но снижается чувствительность к активирующему действию АМФ и фруктозо-2,6-дифосфата. Предполагают, что фосфорилирование индуцирует конформацион-ные изменения, способствующие смещению равновесия между двумя формами фермента активной и неактивной. При связывании АТФ в ингибиторном центре также происходит смещение равновесия в сторону неактивной конформационной формы фосфофруктокиназы. [c.238]

    Примитивность бактерий, по-видимому, выражается и в низких, как правило, величинах отношения Р/0, т. е. в меньшей эффективности сохранения энергии. И если в некоторых случаях найденные величины достигают 3, то в большинстве других случаев полученные результаты противоречивы даже для одного и того же организма [108, 829, 1255, 1904]. Для подробного исследования цепей и точек фосфорилирования также, как и при изучении митохондрий, большую ценность имеют специфические ингибиторы [800, 1543]. [c.144]

    В то время, когда исследователи искали пути к пониманию окислительного фосфорилирования, им стало ясно, что митохондрии участвуют в нескольких типах преобразования энергии. Каждое из них представляет собой определенный вариант основного процесса сопряжения. Любая гипотеза, объясняющая окислительное фосфорилирование, также должна давать объяснения и этим явлениям. Некоторые из процессов такого рода рассмотрены в общем случае ниже. [c.442]

    Креатин (метилгуанидинуксусная кислота) является обязательной составной частью поперечнополосатой мускулатуры. Содержание креатина в скелетных мышцах достигает 400—500 мг%, в сердечноГ мышце креатина в 2—3 раза меньше. Креатин найден также в ткани мозга (около 100 мг%) и в значительно меньших количествах в паренхиматозных органах (10—50 мг%).) В мышечной ткани креатин содержится как в свободном виде, так и в виде фосфорилированного производного (креатинфосфата, фосфокреатина), который образуется в результате обратимого переноса фосфорильного остатка с АТФ на креатин. Реакция катализируется креатинкиназой (АТФ креатин—фосфо-трансфераза, КФ 2.7.3.2). [c.189]

    Все вышеприведенные превращения термодинамически допустимы, поскольку образование ангидрида совершается за счет энергии другого ангидридного соединения. Возможно, суммарная концентрация АТР, ADP и АМР в клетке не меняется во времени. Следует отчетливо представлять, что АТР может синтезироваться путем фосфорилирования ADP также другими донорами фосфатной группы, помимо нуклеозидтрифосфатов, и что в клетке существуют метаболические пути, благодаря которым для синтеза АТР используется энергия расщепления сахаров (глюкозы). [c.134]

    Витамин Bi, открытый Функом (1912), является вторым из наиболее известных витаминов он содержится в дрожжах, зародышах и оболочках злаковых культур, а также в хлебе, изготовленном из муки простого помола. В продуктах витамин Bj встречается как в свободном, так и в связанном виде, в последнем случае он фосфорилирован и соединен с белковым носителем являясь таким образом коферментом карбоксилазы. Поэтому он тесно связан с углеводным обменом. Недостаточность витамина Bj в организме человека может выразиться в накоплении в тканях молочной и пировино-градной кислот, что приводит к развитию полиневритов и нарушению сердечной деятельности. Полное отсутствие витамина Bi в пище ведет к развитию тяжелой формы авитаминоза — болезни бери-бери. [c.665]

    Окисление 3-фосфоглицерата в пировиноградную кислоту. Здесь также образуются 2 АТФ. [При гликолитичегком (без участия кислорода) периоде дыхания организма на одну молекулу глюкозы образуются 4 молекулы АТФ, две из которых расходуются на ее фосфорилирование.] [c.262]

    Упомянем также об обнаружении фосфорилированных под действием киназ аминокислот после кислотного гидролиза белков. В этом случае наиболее удобным оказался двумерный высоковольтный электрофорез на бумаге ( Whatman ЗММ ) при pH 3,5 и 1,9 [ linton et al., 1982]. [c.485]

    Изучение большого числа протекающих в митохондриях процессов может быть успешно проведено как с изолированными органеллами в качестве источника фермента, так и с высокоочищенными препаратами соответствующих митохондриальных ферментов. Однако второй подход практически неприемлем для изучения реакций, непосредственно сопряженных с функционированием системы трансформации энергии в митохондриях. В первую очередь это относится к процессу окислительного фосфорилирования, который с высокой эффективностью протекает и может быть изучен либо в изолированных (интактных) митохондриях, либо в специальным образом полученных препаратах субмитохондриальных частиц. В этом случае также важно убедиться в том, что скорость изучаемой реакции линейно зависит от концентрации катализатора (от концентрации общего белка митохондрий или субмитохондриальных частиц). Измерение скорости окислительного фосфорилирования и термодинамической эффективности (отношение АДФ/О) традиционно проводится и предшествует изучению любых митохондриальных функций. [c.465]


    Все имеющиеся сейчас данные указывают, что необходим перенос двух электронов для образования пары восст. НАДФ и АТФ, т. е. что п = п/2. Учитывая наряду со стехиометрическнм фосфорилированием также фосфорилирование циклическое, моншо объяснить стехиометрию уравнения фиксации СОг (уравнение XII.16), ио которому на одну молекулу восстановленного НАДФ и одну молекулу связанного Og требуется 1,5 молекулы АТФ. [c.327]

    В то время как дыхательная система, генерирующая АТФ, сосредоточена в митохондриях, другая энзиматическая система — система гликолитического фосфорилирования, также генерирующая АТФ, сосредоточена в гиалоплазме. Гликолитический распад углевода дает меньший выход АТФ по сравнению с окислительным распадом. Поэтому энергетически гликолиз менее выгоден, чем дыхание. В соответствии с этим, поксящаяся клетка черпает энергию только за счет дыхания, и гликолиз в ней отсутствует. Это явление называется эффектом Пастера. Но при напряженной работе клетки дыхательное фосфорилирование уже не покрывает энергетических затрат и тогда включается дополнительный генератор энергии — гликолиз. Таким образом, в клетке существует регуляция этих двух энергетических процессов. Было предложено много гипотез для объяснения механизма этой регуляции, но все эти гипотезы оказались недостатонными они не учитывали функции структурных элементов клетки. [c.184]

    В реакцию окислительного фосфорилирования также введены функциональные производные предельных углеводородов, в частности алкил- и бензилбораты (В. К. Кусков, Г. Ф. Бебих). В этом случае выделение индивидуальных хлорангидридов является сложной процедурой и поэтому предложено технические продукты гидролизовать до соответствующих оксиалкил-(бензил)-фосфоновых кислот. [c.249]

    Наиболее неблагоприятно действует на растение разнокачественное засоление, в особенности в случае преобладания в почвенном растворе ионов хлора. Результаты многолетних исследований М. Н. Гончарика приводят автора к выводу, что в основе этого влияния лежат нарушения процессов образования и нормального функционирования протоплазменных структур. Так, например, отмечаемый при хлоридном отравлении хлороз связан, согласно этому автору, с ингибированием процессов образования хлоропластов, что в свою очередь обусловлено нарушением синтеза пластидных белков. Снижение эффективности использования энергии дыхания, вследствие разобщения окисления и фосфорилирования, также связано с нарушениями нормальной структуры митохондрий. [c.504]

    В отличие от изофермента с субъединицами 60 кД фосфорилирование изоформы фосфодиэстеразы с субъединицами 63 кД осуществляется Са-КМ-зависимыми протеинкиназами. Это фосфорилирование также приводит к потере чувствительности фосфодиэстеразы к кальмодулину и обращается Са-КМ-стиму-лируемой протеинфосфатазой с восстановлением чувствительности фосфодиэстеразы к КМ. Очевидно, такой механизм регуляции фосфодиэстеразы реализуется в мозге in vivo, несмотря на очень высокую (>10 мкМ), насыщающую концентрацию в нем КМ. Фосфорирование снижает сродство фермента к КМ и обусловливает зависимость его активности от физиологических концентраций Са " ". [c.346]

    В пользу существенного влияния внешпекинетической области на брутто-процесс фосфорилирования слабо сшитых сополимеров говорит также более крутая зависимость эффективного коэффициента массопроводимости О от температуры (рис. 5.27). Экспериментальное подтверждение наличия внешнекинетической области процесса фосфорилирования представлено на рис. 5.28. [c.363]

    АТФ впервые была выделена из мышц в 1929 К. Ломаном хим. синтез осуществлен А. Тоддом (1948) путем фосфорилирования АМФ и АДФ с помощью дибензил-хлорфосфата. Выделяют АТФ из скелетных мышц или дрожжей. АМФ и АДФ получают гидролизом АТФ, а АМФ также ферментативным фосфорилированием аденозина. [c.33]

    Мембраны играют также важную роль в механизме освобождения и потребления энергии в живых организмах. Различные виды живых клеток получают энергию из окружающей среды в разных формах, однако накопление и использование ее происходит в виде аденозинтри-фосфата (АТФ). При передаче энергии АТФ переходит в аденозин-дифоефат (АДФ), который в свою очередь за счет разных видов энергии присоединяет фосфатную группу и превращается в АТФ. Процесс образования АТФ называется фосфорилированием. Этот процесс в организмах животных и человека сопряжен с процессом дыхания. Аистом генерирования АТФ в животных клетках являются особые компоненты клеток — митохондрии, которые служат своеобразными силовыми станциями , поставляющими энергию, необходимую для функционирования клеток. Митохондрия окружена двумя мембранами внешней и внутренней. На внутренней мембране, содержащей ферментные комплексы, происходит превращение энергии химических связей в мембранный потенциал. При этом важную роль играют проницаемость и электронная проводимость мембран. [c.140]

    Осн. физиол. ф-ция А.-стимуляция биосинтеза и секреции стероидных гормонов корой надпочечников. Механизм действия включает специфич. связывание А. с рецепторами плазматич. мембраны клеток, стимуляцию в плазматич. мембране фермента аденилатциклазы, осуществляющей превращение АТФ в циклич. аденозинмонофосфат. Последний активирует в цитоплазме протеинкиназу, катализирующую серию р-ций фосфорилирования, в результате чего резко увеличивается скорость образования кортикостероидов, а также синтез специфич. белка, необходимого для стимуляции лимитирующей стадии синтеза стероидов - превращения холестерина в прегненолон. А. обладает также [c.37]

    Вода также непосредственно участвует в метаболизме. Она служит источником кислорода, выделяемого в ходе фотосинтеза, и водорода, используемого для восстановления углекислого газа. При образовании АТФ — важного микроэнерге-тического соединения — из АДФ и фосфата происходит отщепление воды иными словами, фосфорилирование есть не что иное, как процесс дегидратации, происходящий в водном растворе в биологических условиях. Таким образом, знание многих уникальных свойств воды имеет громадное значение для общего понимания физиологии растений и животных. [c.44]

    Трихлорбромметан [791]. Продукт Представляет интерес. Как раство-атель при фосфорилировании. Получают его в простом приборе, выдерживая ы течение трех суток при комнатной температуре 350 мл ОС14 с 260 г АШг3. Это вещество можно также получить паройазпым бронированием хлороформа [7921 при 420—450° С. [c.199]

    Рибофлавин (316) назначают при лечении глазных болезней (конъюнктивитах, катаракте и др.), а также при длительно незаживающих ранах и язвах, лучевой болезни и болезни печени. Всасываясь в кищечнике, рибофлавин приобретает биологическую активность после фосфорилирования в кофермент ФМН (317), а также превращения ФМН (при его взаимодействии с АТФ) в ФАД (318). ФМН применяют при глазных, кожных и нервных заболеваниях. ФАД в виде динатриевой соли (флавината) применяют в офтальмологии (для лечения глаукомы) и дерматологии (от псориаза, угрей и т.п.). Нормальные [c.171]

    Определив потребление митохондриями неорганического фосфата и кислорода в аппарате Варбурга (с. 10), рассчитывают коэффициент фосфорилирования. Так как для достоверного определения кислорода и неорганического фосфата необходима довольно продолжительная инкубация митохондрий, в реакционную смесь обычно вносят АДФ-реге-нерирующую систему (чаще всего для этой дели используют гексокиназу с глюкозой). Это удобно также потому, что гексокиназа успешно конкурирует с митохондриальными АТФ-азными реакциями, которые могут сильно искажать результаты опытов, гидролизуя образующийся в ходе фосфорилирования АТФ. [c.467]

    Гистон НЗ из тимуса теленка содержит 135 аминокислотных остатков [288], причем суммарный заряд первых 53 из них составляет -М8. Возможно, именно эта часть белка связывается с ДНК. В то же время карбоксильный конец этого гистона обладает гидрофобными свойствами и лишь в незначительной степени — основными. Интересные кластеры основных аминокислот были обнаружены в отдельных участках полипептидной цепи гистона Н2а [289]. Одна из любопытных особенностей строения гистонов — это наличие большого числа микромодификаций, сводящихся к фосфорилированию остатков серина, ацетилированию и метилированию остатков лизина, а также метилированию боковых цепей аргинина. Так, например, остатки Ьуз-14 и Ьуз-23 в гистоне НЗ К-ацетилированы, тогда как остатки Ьуз-9 и Ьуз-27 частично 8-Ы-метилированы — каждый участок содержит частично моно-, частично ди- и частично триметильные производные. [c.302]

    Предполагается также, что ковалентные модификации (например, путем фосфорилирования) участвуют в механизмах регуляции, контролирующих накопление прогормонов или длительность действия активных гормонов [11]. [c.322]


Смотреть страницы где упоминается термин Фосфорилирование также: [c.94]    [c.208]    [c.292]    [c.143]    [c.144]    [c.153]    [c.473]    [c.122]    [c.138]    [c.162]    [c.138]    [c.395]    [c.441]    [c.475]    [c.630]    [c.492]    [c.338]    [c.351]    [c.426]    [c.32]    [c.34]   
Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Фосфорилирование



© 2024 chem21.info Реклама на сайте