Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки щелочной

    БИУРЕТОВАЯ РЕАКЦИЯ — цветная реакция, которую дают с солями меди в щелочной среде биурет H2N ONH ONH2, амиды и имиды кислот, полипептиды, белки и другие соединения, содержащие группировки —СО—NH—, Б. р. — цветная реакция на белок — лежит в основе его количественного колориметрического определения. Если к щелочному раствору белка прибавить раствор uSO , появляется фиолетовое окрашивание. Чувствитель-1юсть Б. р. невысока. [c.45]


    Как было уже указано, для расщепления белков применяют большей частью кислотный гидролиз (концентрированной соляной и серной кислотами), реже щелочной гидролиз, причем в обоих случаях образуются аминокислоты. Очень действенным является ферментативное расщепление белков. Ферменты животного организма, способные гидролизовать белки, подразделяются на три группы  [c.398]

Рис. 32. Определение величины изокинетической температуры для щелочной денатурации белков Рис. 32. <a href="/info/39290">Определение величины</a> <a href="/info/591947">изокинетической температуры</a> для <a href="/info/1409896">щелочной денатурации</a> белков
    Диссоциацию белка в кислой, щелочной средах и в ИЭТ можно представить уравнениями [c.468]

    Значение pH, соответствующее изоэлектрическому состоянию белков, принято называть изоэлектрической точкой (ИЭТ). Для большинства белков ИЭТ лежит в области кислых растворов. Так, для казеина она равна 4,6, для желатина 4,7, для глобулина 5,4. Положение ИЭТ зависит от наличия солей в растворе. Некоторые анионы, например NS , сдвигают ее в кислую сторону, а катионы, особенно многовалентные, — в щелочную. Изменение свойств растворов белков вблизи ИЭТ связано с изменением формы белковых макромолекул. Их форма имеет резко выраженную зависимость от pH среды. [c.207]

    Среди высокомолекулярных соединений важное место занимают белки. Они играют основную роль во всех жизненных процессах, а продукты их переработки — в технике и производстве. Белки являются полимерными электролитами, так как их молекулы содержат ионогенные группы. Поэтому растворы белков имеют целый ряд особенностей по сравнению с растворами других полимеров. В состав молекул белков входят разнообразные а-аминокислоты, в общем виде формула их строения может быть записана в форме КНг — К — СООН. В водном растворе макромолекула представляет амфотерный ион КНз — К — СОО . Если числа диссоциированных амино- и карбоксильных групп одинаковы, то молекула белка в целом электронейтральна. Такое состояние бедка называют изоэлектрическим состоянием, а соответствующее ему значение pH раствора — изоэлектрической точкой (ИЭТ). Чаще всего белки — более сильные кислоты, чем основания, и для них ИЭТ лежит при pH < 7. При различных pH изменяется форма макромолекул в растворе. В ИЭТ макромолекулы свернуты в клубок вследствие взаимного притяжения разноименных зарядов. Б кислой и щелочной средах в макромолекуле преобладают заряды только одного знака, и вследствие их взаимного отталкивания молекулы распрямляются и существуют в растворе в виде длинных гибких цепочек. Поэтому практически все свойства растворов белков проходят через экстремальные значения в изоэлектрическом состоянии осмотическое давление и вязкость минимальны в ИЭТ и сильно возрастают в кислой и щелочной средах вследствие возрастания асимметрии молекул, минимальна также способность вещества к набуханию, оптическая плотность раствора в ИЭТ максимальна. Изучение всех этих свойств используется для определения изоэлектрической точки белков. [c.443]


    Метод Лоури и сотр. [120], в котором используется фенольный реактив Фолина с предварительной обработкой белка щелочным раствором медных солей, очень широко применялся для определения белков вообще, а также и для гликонротеинов [121, 122]. Методика проста, в гидролизе нет необходимости, чувствительность реакции высока. Однако серьезный недоста- [c.150]

    Химический гидролиз. Химический гидролиз белков может быть осуществлен либо в кислой, либо в щелочной среде. Обычно предпочитают кислотное расщепление, так как под действием щелочей [c.541]

    Аналогичным образом можно объяснить влияние нейтральных электролитов и на набухание белков. В кислой и щелочной средах все нейтральные соли уменьшают набухание белка, что вполне согласуется с теорией. Однако вблизи изоэлектрической точки соли могут как понижать, так и увеличивать набухание. При этом решающую роль играют анионы, которые по влиянию на набухание можно расположить в следующие ряды  [c.476]

    Следует отметить, что при достаточно жестких гидролитических обработках некоторые боковые радикалы претерпевают глубокие химические изменения. Так, при длительном нагревании белка в 6 н. растворе НС1 при ПО °С разрушаются Try, ys, Thr. Еще большие изменения полимерного субстрата происходят в результате щелочного гидролиза. Так, при нагревании бел- [c.358]

    Ответ. Под влиянием щелочных обработок при повышенной температуре происходит распад дисульфидных связей в полимерном субстрате кератина -основного белка человеческого волоса, при этом деструкции полимерной цепи практически не наблюдается  [c.359]

    Таким образом, при щелочном гидролизе может происходить не только деструкция полимерной цепи, но и изменение первичной структуры белка, о чем свидетельствуют данные, приведенные на рис. 6.11 [c.359]

    Пептидную связь можно гидролизовать в кислой, щелочной среде и под действием ферментов, получив снова. аминокислоты. С помощью подходящей комбинации экспериментальных методов можно определить последовательность расположения аминокислотных остатков в молекулах пептидов и белков. Эта последовательность называется первичной структурой пептида или белка. [c.191]

    Встречающиеся в природе щелочные условия обычно связаны е почвами. Типичными являются участки, обогащенные щелочными минералами, экскрементами животных или разлагающимися белками. Щелочные почвы могут возникать в результате полного окисления органического вещества в районах с повы- [c.328]

    Определение проводят после осаждения белков щелочным раствором цинка  [c.19]

    Что касается природы белков, связанных с нуклеиновыми кислотами, то на этот вопрос исчерпывающего ответа мы дать пока не можем. Однако известно, что в ядрах и рибосомах нуклеиновые кислоты связаны с белками щелочного характера, содержащими много основных аминокислот (белки типа ги-стонов, протаминов или глобулинов с высоким содержанием основных аминокислот). Кроме щелочных белков, в образовании связей с нуклеиновыми кислотами могут принимать участие и другие белки. [c.237]

    Изоэлектрическая точка белков не совпадает с нейтральной реакцией раствора (pH = 7), вследствие неравенства щелочной и кислотной констант диссоциации у белков. Обычно она сдвинута в кислую сторону. [c.300]

    Щелочная денатурация белков, приведенных ниже, характеризуется следующими значениями энтальпии и энтропии активации  [c.71]

    Наоборот, при сдвиге в щелочную сторону частицы белка будут находиться в состоянии анионов и будут поэтому нести отрицательный заряд. [c.300]

    Значение pH раствора полиамфолита, при котором средний суммарный заряд на цепи равен нулю, называется изоэлектрической точкой (ИЭТ). Величина ИЭТ не зависит от концентрации полиамфолита и является важной константой полиамфолита. На различии в ИЭТ основано фракционирование смесей белков, например, методом электрофореза. При определении ИЭТ учитывается суммарный заряд макромолекул, обусловленный не только диссоциацией кислотных и основных групп полиамфолита, но и специфическим связыванием посторонних ионов из раствора. ИЭТ определяется с помощью электрокинетических методов (в частности, электрофореза) либо косвенным путем по изменению свойств, связанных с зарядом макромолекул. Значения степени набухания, растворимости полиамфолитов, осмотического давления и вязкости их растворов в ИЭТ проходят через минимум. Вязкость в ИЭТ минимальна (рис. IV. 7), поскольку вследствие взаимного притяжения присутствующих в равном количестве противоположно заряженных групп полимерная цепь принимает относительно свернутую конформацию. При удалении от ИЭТ цепь полиамфолита приобретает суммарный положительный (в кислой области pH) или отрицательный (в щелочной области pH) заряд [c.127]

    К продуктам, способным образовывать адсорбционные слои в гидрозолях, относят белки, щелочные мыла и некоторые другие соедапения [c.11]

    Поскольку разные ионы обладают разной подвижностью, на основе электрофореза возможно разделение веществ, молекулы которых могут быть заряжены. К их числу относятся важнейшие биополимеры— белки и нуклеиновые кислоты. Белки содержат, как правило, много NH2- и других групп, способных присоединять протоны и тем самым заряжаться положительно. Они содержат также много карбоксильных групп (СООН), которые, ионизуясь, дают отрицательно заряженные ионы СОО . Степень протонирования и степень ионизации отдельных групп, а следовательно, и заряд белковой молекулы зависят от pH среды. В кислой среде белки заряжены положительно, в щелочной — отрицательно. Нуклеиновые кислоты содержат остатки фосфорной кислоты, которые уже в слабо кислой, а тем более в нейтральной и щелочной средах ионизированы, т. е. несут отрицательный заряд, в связи с чем нуклеиновые кислоты находятся в растворе в виде полианионов. Поэтому электрофорез является важнейшим методом препаративного разделения и анализа смесей белков и смесей нуклеиновых кислот. [c.330]


    Как уже указывалось в главе VI, стабилизация дисперсной системь с помощью структурированных механически прочных оболочек универсальна и придает дисперсной системе практически безграничную устойчивость. Тип образующейся концентрированной эмульсии зависит главным образом от природы эмульгатора. Выбор эмульгатора определяется следующим правилом эмульсии первого типа м/в) стабилизуются растворимыми в воде высокомолекулярными соединениями, например белками или воднорастворимыми гидрофильными мылами (оле-атом натрия и вообще мылами щелочных металлов). Эмульсии второго типа в/м) стабилизуются высокомолекулярными соединениями, растворимыми в углеводородах, например полиизобутиленом, олеофильными смолами и мылами с поливалентными катионами (олеатом кальция и др.), не растворимыми в воде, но растворимыми в углеводородах. Следовательно, эмульгатор должен иметь большее сродство с той жидкостью, которая является дисперсионной средой. Воднорастворимые мыла и воднорастворимые высокополимеры стабилизуют эмульсин масла в воде, в которых вода — дисперсионная среда. Каучук и другие высокополимеры, растворимые в углеводородах, стабилизуют эмульсии, в которых дисперсионная среда — масло (углеводородная жидкость). [c.143]

    Что касается того исключительного белка, который синтезируется конститутивно, т. е. в 50—100 раз быстрее остальных, то тут имеются две возможности. Если скорость синтеза каждой макромолекулы во много раз больше, чем у остальных белков, то синтезируемые за время т молекулы фосфатазы становятся пол-ностью меченьши с удельной активностью (по лейцину) такой же, как у аминокислоты. Если же кинетика синтеза одинакова, но отличается число рибосом, штампуюш,их белок, то степень меченности содержит тот же фактор . Сравнивая удельную радиоактивность избранного нами белка щелочно фосфатазы и остальных белков, мы даем однозначный ответ на поставленный вопрос. [c.463]

    При диссоциацпп карбоксильной группы происходит образование понов водорода, вследствие чего белок приобретает слабо кислый характер и в электрическом поле будет двигаться к аноду. В свою очередь, аминогруппа (—КНа), присоединяя протоны, придает белку щелочный характер и тем самым обусловливает передвижение микроба к катоду. [c.53]

    Был получен Pho мутант Е. oti (дефектный по щелочной фосфатазе), содержащий ат-мутацию гене Phok. Из этого мутанта был получен набор Pho ревертантов, у которых восстановленне активности щелочной фосфатазы не было связано с действием супрессоров. Анализ аминокислотной последовательности белка щелочной фосфатазы этих ревертантов показал, что они содержат различные аминокислотные замены, показанные на схеме в том месте полипептидной цепи, где в белке дикого-типа находится остаток триптофана. Для каждой аминокислоты указаны ее кодоны-синонимы подчеркнуты те из них, которые связаны с УАГ одиночной заменой основания. Очевидно, что УАГ является единственным триплетом, из которого в результате одиночных замен может возникнуть хотя бы по одному кодону для каждой из семи аминокислот, обнаруженных в ревертантах. [c.456]

    Химические методы рафинации заключаются в обработке жиров водой (40—50°С, гидратация) слабым водяным или водноспиртовым раствором щелочи (щелочная рафинация). При гидратации коллоиднорастворимые в жирах фосфатиды, белковые и слизистые вещества набухают, их растворимость понижается и они легко отделяются центрифугированием или филь-тропрессованием. Возможна предварительная кислотная рафинация масла (например, фосфорной кислотой) с последующей нейтрализацией едким натром. Щелочная рафинация распространена более щироко. Свободные жирные кислоты нейтрализуются с образованием нерастворимых в жирах мыл, а белковые и слизистые вещества гидратируются. Мыло, обладая высокой абсорбционной и адсорбционной способностью, оседая, увлекает за собой значительную часть нежелательных компонентов — белки, слизи, пигменты, механические примеси. Из образующегося осадка, называемого соапстоком и содержащего 50—80% жира, выделяют жирные кислоты, применяемые в мыловарении, производстве пластичных смазок и для других целей. [c.229]

    Встречающиеся в природе щелочные условия обычно связаны с почвами. Таковы почвы, обогащенные щелочными минералами, экскрементами животных, разлагающимися белками. Щелочная реакция почв может быть результатом полного окисления органического вещества в условиях повышенной аэрации и высокой температуры. В таких почвах pH может достигать 10. Обнаружены также щелочные озера и источники, pH которых 8—11. Из таких мест выделены представители в основном рода Ba illus, активно разлагающие белки с выделением аммиака, а также бактерии, восстанавливающие нитрат и сульфат. Цианобактерии обильно растут в природных средах с pH 7,5—10. Для некоторых из них оптимум pH лежит около 10. [c.106]

    При использовании в качестве модификаторов поверхности белков частицы золя в кислой среде вследствие диссоциации основных i pynn белка (диссоциация кислотных групп подавлена) приобретают положительный заряд. В щелочной среде, когда диссоциируют иреимущественно карбоксильные группы белка, частицы золя заряжены отрицательно. При значениях pH, отвечающих изоэлектрической точке белка, электрофоретическая подвил иость золя равпа пулю. [c.100]

    При добавлении к дисперсии (или раствору) белка диазобен-золсульфокислоты в щелочной среде появляется красное окрашивание, переходящее при подкислении в желто-красное. [c.355]

    Полипептиды под действием кислотных и щелочных агентов способны к гидролитической деструкции. Гидролиз белков кипящими растворами разбавленных кислот (НС1, H2SO4) приводит к практически полному (до 96-98%) распаду полимерного субстрата на элементарные аминокислоты  [c.357]

    Наиболее широко учение о структурно-механическом факторе стабилизации развито П. А. Ребиндером. Согласно П. А. Ребиндеру, стабилизующими свойствами обладают, насыщенные или близкие к насыщению адсорбционные слои ориентированных молекул поверхностно-активных веществ, образующие двухмерные структуры. Особенно сильным стабилизующим действием обладают коллоидные адсорбционные слои, являющиеся своеобразными пленочными (двухмерными) tyднями — лиогелями, сильно сольватированными дисперсионной средой и диффузно переходящими в межмицеллярную жидкость. Веществами, способными образовывать такие слои, являются белки и щелочные мыла в гидрозолях, в олеозолях — смолы, мыла поливалентных металлов и липоиды. [c.283]

    Различное влияние анионов на набухание объясняется тем, что они обладают различным растворяющим или, наоборот, высаливающим действием на белки. Особая роль аниона по сравнению с катионом объясняется тем, что обратимый характер имеет лишь действие катионов щелочных металлов. Все поливалентные катионы дают при взаимодействии с R OO" (обычным анионом высокомолекулярных электролитов) нерастворимые соединения, т. е. вызывают образование нео братимого осадка. [c.476]

    Однако стабилизация дисперсных систем значительно более эффективна при добавлении к ним поверхностно-активных веществ (ПАВ) и Бысокомолеку.ляр-ных соединений, адсорбирующихся на границе раздела фаз. Адсорбционные слои ПАВ и высокомолекулярных соединений, обладая упругостью и механической прочностью, предотвращают слипание дисперсных частиц. Образование таких молекулярно-адсорбционных твердообразных поверхностных слоев П. А. Ребиндер назвал стпруктурно-механически.и фактором стабилизации дисперсных систем. Этот механизм стабилизации играет основную роль при получении предельно устойчивых высококонцентрированных пен, эмульсий, коллоидных растворов и суспензий не только в неводных, но и в водных средах. Для структурномеханической стабилизации дисперсий н водной среде применяют мыла щелочных металлов, белки, крахмал, а в неводных средах — мыла щелочноземельных металлов, смолы, каучуки. Такие вещества называют защитными коллоидами. [c.311]

    Наиболее полно изучены свойства растворов белков. В зависимости от pH раствора макроионы белков имеют положительный заряд (в кислой среде за счет групп — ЫНз ) или отрицательный заряд (в щелочной среде за счет групп —СОО ). Между этими состояниями белка существует состояние, при котором число ионизированных основных групп равно числу ионизированных кислотных групп. Это равнозарядное состояние называют изозлектрическим, а значение pH, отвечающее этому состоянию,— изоэлектрической точкой (ИЭТ). [c.468]

    Помимо воды, из неорганических соединений в жидком НР хорошо растворимы фториды, нитраты и сульфаты одновалентных металлов (и аммония), хуже — аналогичные соли Мд, Са, 8г и Ва, По рядам Ь1—Сз и Мд—Ва, т, е. по мере усиления металлического характера элемента, растворимость повышается. Щелочные и щелочноземельные соли других галоидов растворяются в НР с выделением соответствующего галоидоводорода. Соли тяжелых металлов в жидком НР, как правило, нерастворимы. Наиболее интересным исключением является Т1Р, растворимость которого исключительно велика (в весовом отношении около 6 1 при 12°С). Практически нерастворимы в жидком НР другие галондоводороды. Концентрированная серная кислота взаимодействует с ним по схеме + ЗНР НзО + НЗОдР + НР . Жидкий фтористый водород является лучшим из всех известных растворителем белков. [c.247]

    Примерами отрицательно заряженных частиц могут служить золи металлов Ли, Ад, Р1, 5Ь, Си сульфиды металлов Аз, 5Ь, ей, РЬ пятиокись ванадия, сера кислоты кремневая, оловянная кислотные красители (красное конго, бензпур-пурин и др.), мыло крахмал, пектин, гумус мастика гуммигут, латексы гуммиарабик, белки в щелочной среде, почвенные частицы. [c.78]


Смотреть страницы где упоминается термин Белки щелочной: [c.204]    [c.462]    [c.125]    [c.135]    [c.183]    [c.336]    [c.541]    [c.288]    [c.119]    [c.423]    [c.197]    [c.427]    [c.241]    [c.322]   
Химия природных соединений (1960) -- [ c.478 ]




ПОИСК





Смотрите так же термины и статьи:

Определение триптофана после щелочного гидролиза белка



© 2025 chem21.info Реклама на сайте