Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм действия гомогенных и гетерогенных катализаторов окисления

    Представления о гетерогенном катализе в жидкой фазе, как процессе зарождения радикалов на поверхности катализатора с последующим переходом радикалов в объем жидкости [4, 5] подтверждены прямыми экспериментальными данными по кинетике распада гидроперекиси изопропилбензола в присутствии окислов металлов [8]. Таким образом, задача, установления механизма катализирующего действия гетерогенных (нерастворимых) катализаторов в процессах окисления требует одновременного рассмотрения и учета реакций между исходным веществом, промежуточными соединениями и кислородом на поверхности катализатора и гомогенных радикальных реакций окисления в тех же условиях. [c.193]


    МЕХАНИЗМ ДЕЙСТВИЯ ГОМОГЕННЫХ И ГЕТЕРОГЕННЫХ КАТАЛИЗАТОРОВ ОКИСЛЕНИЯ [c.192]

    Обобщение экспериментальных данных и рассмотрение механизма реакции приводит к выводу о глубокой аналогии в механизме действия гомогенных и гетерогенных каталитических систем димеризации олефинов. Активные центры (комплексные гидриды переходного металла) могут образовываться при взаимодействии соединения никеля с алюминийорганическим соединением или олефином. В частности, в случае окиси никеля на алюмосиликате источником активных центров, по-видимому, может быть взаимодействие никеля в аномально низкой степени окисления с олефином. Катализатор может образоваться в местах дефектов кристаллической решетки NiO при отрыве атома кислорода (под действием олефина как восстановителя)  [c.99]

    В книге рассмотрены превращения углеводородов на гомогенных и гетерогенных катализаторах, в частности окисление углеводородов — один из важнейших процессов современной нефтехимии. Приведена классификация катализаторов (неорганические комплексы, металлы, кислотные гомогенные и гетерогенные, бифункциональные) и разобраны механизмы их действия с точки зрения современных представлений физической и органической химии. [c.4]

    Сложный состав продуктов окисления углеводородов связан с тем, что образующиеся при окислении кислородсодержащие соединения обладают обычно большей реакционной способностью, чем исходные углеводороды, и легко подвергаются дальнейшему окислению. Максимальная концентрация каждого промежуточного соединения. будет определяться скоростью его образования и расходования, зависящей от реакционной способности соединения. Повышение селективности процесса окисления во многих случаях достигается применением гомогенных и гетерогенных катализаторов избирательного действия или инициатора при радикальном механизме процесса. [c.34]

    Взаимоотношения между гомогенным и гетерогенным катализом изучены лишь слабо главным образом потому, что элементы, способные дать начало обоим видам катализа, пе исследованы по всему интервалу переменных (например, pH и концентрации), определяюнгих состояние катализатора. В качестве катализатора, нри котором можно наблюдать переход от гомогенного механизма к гетерогенному, можно назвать железо. В кислом растворе реакция чисто гомогенная. Однако если увеличивать pH, начинает появляться коллоидное вещество и одновременно происходит изменение скорости (см. рис. 76 на стр. 440). При еще более высоких pH может наблюдаться образование макроскопического осадка, а также и другие кинетические изменения. На скорость катализа могут влиять и изменения физической формы (наличие носителя для катализатора, спекание катализатора или изменение кристаллической структуры). Хотя еще не вполне точно определен pH, при котором начинает появляться коллоидное вещество, не подлежит никакому сомнению факт перехода от гомогенного разложения к гетерогенному при повышении pH. Однако существуют еще значительные неясности по вопросу природы изменения механизма. В некоторых случаях оба вида разложения могут быть качественно объяснены одним и тем же механизмом, например циклическим окислением и восстановлением. В то же время образование комплекса или осаждение катализатора в коллоидном или твердом состоянии может определить т -долю от общего количества имеющегося катализатора, которая способна фактически участвовать в реакции и таким образом влиять на наблюдаемую скорость разложения. Такого рода случай комплексообразования встречается при катализе полимеризации действием перекисей [79]. При чисто гетерогенном катализе наблюдаемая скорость зависит от степени дисперсности твердого катализатора, так как эта дисперсность определяет размер поверхности, находящейся в контакте со средой. Наоборот, вполне возможно, что при переходе от гомогенной системы к гетерогенной коренным образом изменяется и характер реакции, которой подвергается перекись водорода, например ионный механизм может перейти в радикальный. Возможно, что при изменении условий имеется сравнительно тонкая градация в переходе от одного механизма к другому. При выяснении различий гомогенного и гетерогенного катализа нужно всегда учитывать возможное влияние адсорбции из раствора на гомогенный катализ. Так, одновалентное серебро, не обладающее каталитическими свойствами нри гомогенном диспергировании, легко адсорбируется стеклом [80]. В адсорбированном состоянии оно может нриобрести каталитические свойства в результате либо истинного восстаровления до металла, либо только поляризации [81]. Последующее использование поверхности стекла в контакте с более щелочным раствором также может активировать адсорбированное серебро. Это особенно заметно в случае поверхности стеклянного электрода. [c.393]


    Согласно представлению о механизме действия присадок при окислении масла в присутствии металла в качестве гетерогенного положительного катализатора, присадок П должен полностью ликвидировать действие катализатора, Д — в начальной стадии не влиять на окисление, а затем задерживать его по мере образования гомогенного катализатора, а И — увеличивать ИПО (рис. 4.10,а). [c.100]

    В связи с изложенным высказываются предположения, что механизм каталитического действия солей металлов при гомогенном жидкофазном окислении принципиально не отличается от механизма действия катализаторов гетерогенного парофазного окисления (см. 17.2.5) и состоит в активации молекул кислорода [5, с. 45]. Предполагается, что активация происходит путем [c.493]

    Теории каталитического окисления сернистого газа видоизменялись в соответствии с развитием общих представлений о механизме гетерогенного катализа. Вначале при изучении этой проблемы господствовали теории, предполагающие образование промежуточных химических соединений между катализатором и реагентами. Они появились в результате переноса этих представлений из области гомогенного катализа, не учитывая возможности изменения химических свойств веществ на поверхности раздела фаз, т. е. специфичности условий гетерогенного катализа. Эти теории в, основном применялись к окисным катализаторам, так как окислы образуют большую группу соединений, которые можно рассматривать как промежуточные образования между катализатором и реагирующими веществами. К действию платины же в основном применялись физические теории, хотя и здесь делались отдельные попытки свести каталитическое действие платины к образованию в качестве промежуточного вещества окислов платины. [c.140]

    При исследовании механизма действия гетерогенных катализаторов используют модельные оистемы, имитирующие отдельные стадии жидкофазного окисления. Например, гомогенные превращения радикалов, десорбирующихся с поверхности катализатора в объем раствора, можно моделировать реакциями окисления углеводорода в присутствии гомогенных инициат01ров — веществ, распадающихся на свободные радикалы в тех же условиях, в которых осуществляется гетерогенный катализ. Имеющиеся в литературе сведения о константах скоростей отдельных элементарных стадий позволяют определить соотношение скоростей гомогенных и гетерогенных реакций в процессе окисления. Большое значение для установления механизма инициирования гетерогеннокаталити-ческого окисления углеводородов имеет изучение распада гидроперекисей. [c.266]

    В качестве модельной реакции свободных радикалов, переходящих в объем жидкости при гетерогенном инициировании процессов жидкофазного окисления углеводородов, изучено окисление изопропилбензола и этилбензола в присутствии азо-бис-изобу-тиронитрила. Полученные данные по кинетике накопления продуктов реакции служат дополнительным подтверждением принятого в литературе механизма этих реакций. Сопоставлением кинетики окисления изопропилбензола и этилбензола при гомогенном инициировании и в присутствии различных окислов металлов показано участие гетерогенных катализаторов в реакциях зарождения и обрыва цепи. Установлены существенные различия в механизме действия окислов серебра, никеля, марганца и других металлов. [c.325]

    Механизм газофазных комбинированных окислительных процессов сложён. Учитывая совмещение разнотипных реакций, необходимо, чтобы применяемый гетерогенный- катализатор по характеру действия был полифункциональиым часто нужно вво- дить в газовую фазу гетероатомные добавки. Основные превращения исходных и промежуточных веществ идут на поверхности катализатора. Однако, как и при контактном окислении, им. нередко сопутствуют объемные, гомогенные стадии. Совокупность превращений складывается. Как правило, из нескольких -взаимообусловленных параллельных маршрутов, каждый из которых носит характер последовательной реакции. [c.6]

    Катализ гетерогенизированными металлокомплексами возник как следствие энергичного и продуктивного развития гомогенного металлокомплексного катализа. Особые свойства металлокомплексных катализаторов (МК) были установлены уже к началу 70-х годов. Речь идет о высокой селективности (нередко стереоселективности) действия, сочетающейся с большей активностью по сравнению с гетерогенными аналогами и позволившей создать ряд новых промышленных процессов стереоспецифической полимеризации, метатезиса олефинов, парциального окисления, гидрирования и т.д., развить новые подходы в понимании детальных механизмов действия многих контактов, в том числе гетерогенных [378 . [c.475]

    Каталитические реакции, применяемые в большом масштабе в качестве промышленных процессов, являются в большинстве случаев гетерогенными. Хотя каталитические реакции этого типа уже рассматривались в предыдущих главах, тем не менее здесь будут изложены некоторые специфические случаи гетерогенных каталитических реакций, чтобы показать различия между гетерогенной и гомогенной системами. Для объясне-нения ускоряющего действия катализаторов в гетерогенных системах были предложены различные механизмы, именно 1) катализатор периодически окисляется и восстанавливается [514] 2) электроны, излучаемые из катализатора, ионизируют газы (реагируюыще компоненты), делая их способными реагировать [264], 3) реагирующие компоненты адсорбируются на катализаторе, причем более быстрое превращение происходит благодаря увеличению концентрации на поверхности [154, 177, 178, 470] или созданию условий повышения скорости реакции, и 4) изменяется молекулярное состояние реагирующих компонентов (образование атомов) [55, 514]. Наиболее вероятной причиной ускорения реакции считалась адсорбция газов на катализаторе. В гетерогенном газовом катализе, например, при окислении двуокиси серы в серную кислоту с применением различных катализаторов — платины или ванадиевой и мышьяковой кислот, экспериментально измеряемая скорость реакции — это скорость, с которой сернистый ангидрид диффундирует через слой адсорбированной трехокиси серы, в то время как газы, достигая поверхности катализатора, реагируют почти мгновенно. В противоположность этой группе гетерогенных каталитических реакций имеется другая группа, в которой реагирующие вещества образуют с очень большой скоростью адсорбционный слой на катализаторе, в котором происходит химическая реакция с небольшой скоростью. [c.176]


    Действие одного катализатора при неполном гетерогенном окислении предельных углеводородов часто оказывается недостаточным. Авторами [42] изучено влияние окислов азота в процессе окисления метана на платиновом катализаторе. Показано, что реакция зарождается на поверхности катализатора и протекает по гетерогенно-гомогенному механизму с преобладанием гомогеппой стадии. Значительные успехи были достигнуты Медведевым [43] при сочетании твердого катализатора — боратов и фосфатов олова, свинца и железа с газообразным катализатором— хлористым водородом. При температуре 600° и содержании в метано-воздушной смеси 0,3% хлористого водорода удалось до 5% пропущенного метана превратить в формальдегид. [c.18]


Смотреть страницы где упоминается термин Механизм действия гомогенных и гетерогенных катализаторов окисления: [c.248]    [c.248]    [c.325]    [c.593]    [c.21]    [c.181]    [c.116]    [c.18]   
Смотреть главы в:

Окисление и стабилизация реактивных топлив -> Механизм действия гомогенных и гетерогенных катализаторов окисления




ПОИСК





Смотрите так же термины и статьи:

Гетерогенные гомогенных

Гетерогенный катализатор

Катализаторы механизм

Механизм действия



© 2025 chem21.info Реклама на сайте